Solveeit Logo

Question

Question: Evaluate the area of the ellipse \(\dfrac{{{x}^{2}}}{4}+\dfrac{{{y}^{2}}}{9}=1\) above the x-axis....

Evaluate the area of the ellipse x24+y29=1\dfrac{{{x}^{2}}}{4}+\dfrac{{{y}^{2}}}{9}=1 above the x-axis.

Explanation

Solution

Hint: Plot the curve on a graph. Observe that the curve is symmetrical in all the four quadrants. Hence find the area in the first quadrant, and hence the area of the ellipse will be two times the area in the first quadrant(Because only the first quadrant and the second quadrant are above x-axis). For finding the area in the first curve quadrant express y in terms of x. Note that y>0 and hence take only the positive sign. Then use the fact that the area under the curve is given by abydx\int_{a}^{b}{ydx}. Substitute suitable values of a and b and integrate and hence find the area.

Complete step-by-step answer:

As is evident from the graph that the curve is symmetrical in the four quadrants. Hence, we will find the area in the first quadrant, and then the total area will be two times the area in the first quadrant.
Now, we have
x24+y29=1\dfrac{{{x}^{2}}}{4}+\dfrac{{{y}^{2}}}{9}=1
Subtracting x24\dfrac{{{x}^{2}}}{4} from both sides, we get
y29=1x24\dfrac{{{y}^{2}}}{9}=1-\dfrac{{{x}^{2}}}{4}
Multiplying both sides by 9, we get
y2=9(1x24){{y}^{2}}=9\left( 1-\dfrac{{{x}^{2}}}{4} \right)
Hence, we have
y=±31x24=±324x2y=\pm 3\sqrt{1-\dfrac{{{x}^{2}}}{4}}=\pm \dfrac{3}{2}\sqrt{4-{{x}^{2}}}
Now since in the first quadrant, y>0.
Hence, we have
y=324x2y=\dfrac{3}{2}\sqrt{4-{{x}^{2}}}
Now consider the vertical strip CDEF.
Here CE = y and EF = dx
Hence the area of the strip will be ydx.
The area in the first quadrant will be the sum of the area of these vertical strips from A to B.
Now at point B, we have y = 0
Hence x24=1x2=4x=±2\dfrac{{{x}^{2}}}{4}=1\Rightarrow {{x}^{2}}=4\Rightarrow x=\pm 2
Since the abscissa of point B is positive, we have x=2x=2.
Hence the area in the first quadrant will be 02ydx\int_{0}^{2}{ydx}
Substituting the value of y, we get
The area in the first quadrant is 02324x2dx\int_{0}^{2}{\dfrac{3}{2}\sqrt{4-{{x}^{2}}}dx}
Let I=02324x2dxI=\int_{0}^{2}{\dfrac{3}{2}\sqrt{4-{{x}^{2}}}dx}
Finding the value of I:
Put x = 2sint.
Differentiating both sides with respect to t, we get
dxdt=2costdtdx=2costdt\dfrac{dx}{dt}=2\cos tdt\Rightarrow dx=2\cos tdt
When x = 0, we have 2sint=0sint=0t=02\sin t=0\Rightarrow \sin t=0\Rightarrow t=0
When x = 2, we have 2sint=2sint=1t=π22\sin t=2\Rightarrow \sin t=1\Rightarrow t=\dfrac{\pi }{2}
Hence we have
I=320π244sin2t2costdt=60π21sin2tcostdtI=\dfrac{3}{2}\int_{0}^{\dfrac{\pi }{2}}{\sqrt{4-4{{\sin }^{2}}t}2\cos tdt}=6\int_{0}^{\dfrac{\pi }{2}}{\sqrt{1-{{\sin }^{2}}t}\cos tdt}
Now, we know that 1sin2t=cos2t1-{{\sin }^{2}}t={{\cos }^{2}}t
Hence, we have
I=60π2cos2tcostdt=60π2costcostdtI=6\int_{0}^{\dfrac{\pi }{2}}{\sqrt{{{\cos }^{2}}t}\cos tdt}=6\int_{0}^{\dfrac{\pi }{2}}{\left| \cos t \right|\cos tdt}
Since in the interval (0,π2)\left( 0,\dfrac{\pi }{2} \right) cost is positive, we have cost=cost\left| \cos t \right|=\cos t
Hence, we have
I=60π2cos2tdt (i)I=6\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{2}}tdt}\text{ }\left( i \right)
We know that abf(x)dx=abf(a+bx)dx\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}
Hence, we have
I=60π2cos2(π2x)dxI=6\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{2}}\left( \dfrac{\pi }{2}-x \right)dx}
We know that cos(π2x)=sinx\cos \left( \dfrac{\pi }{2}-x \right)=\sin x
Hence, we have
I=60π2sin2xdx (ii)I=6\int_{0}^{\dfrac{\pi }{2}}{{{\sin }^{2}}x}dx\text{ }\left( ii \right)
Adding equation (i) and equation (ii), we get
2I=60π2(sin2t+cos2t)dt2I=6\int_{0}^{\dfrac{\pi }{2}}{\left( {{\sin }^{2}}t+{{\cos }^{2}}t \right)dt}
We know that sin2t+cos2t=1{{\sin }^{2}}t+{{\cos }^{2}}t=1
Hence, we have
2I=60π21dt=6t0π2=6(π20)=3π2I=6\int_{0}^{\dfrac{\pi }{2}}{1dt}=6\left. t \right|_{0}^{\dfrac{\pi }{2}}=6\left( \dfrac{\pi }{2}-0 \right)=3\pi
Dividing both sides by 2, we get
I=3π2I=\dfrac{3\pi }{2}
Hence the area in the first quadrant is 3π2\dfrac{3\pi }{2}
Hence the total area of the ellipse is 2×3π2=3π2\times \dfrac{3\pi }{2}=3\pi

Note: [1] We can directly solve I using the fact that a2x2=x2a2x2+a22sin1xa\int{\sqrt{{{a}^{2}}-{{x}^{2}}}=\dfrac{x}{2}\sqrt{{{a}^{2}}-{{x}^{2}}}+\dfrac{{{a}^{2}}}{2}{{\sin }^{-1}}\dfrac{x}{a}}
Hence, we have
I=32(x24x2+42sin1x20a)=32[(2244+42sin122)(02402+42sin102)] =3π2 \begin{aligned} & I=\dfrac{3}{2}\left( \left. \dfrac{x}{2}\sqrt{4-{{x}^{2}}}+\dfrac{4}{2}{{\sin }^{-1}}\dfrac{x}{2} \right|_{0}^{a} \right)=\dfrac{3}{2}\left[ \left( \dfrac{2}{2}\sqrt{4-4}+\dfrac{4}{2}{{\sin }^{-1}}\dfrac{2}{2} \right)-\left( \dfrac{0}{2}\sqrt{4-{{0}^{2}}}+\dfrac{4}{2}{{\sin }^{-1}}\dfrac{0}{2} \right) \right] \\\ & =\dfrac{3\pi }{2} \\\ \end{aligned}
Which is the same as obtained above.
[2] Alternatively, we have
Area of ellipse =πab=\pi ab
Hence the total area of the ellipse π(3)(2)=6π\pi \left( 3 \right)\left( 2 \right)=6\pi
Hence the area above the x-axis =6π2=3π=\dfrac{6\pi }{2}=3\pi