Solveeit Logo

Question

Question: \(Evaluate:{\text{ }}\int {{{\sin }^4}x{{\cos }^4}x} dx\)...

Evaluate: sin4xcos4xdxEvaluate:{\text{ }}\int {{{\sin }^4}x{{\cos }^4}x} dx

Explanation

Solution

Hint : In this integration question, the trigonometry identities must be known to solve this problem. The key observation here to use the formula cos2x=1+cos2x2{\cos ^2}x = \dfrac{{1 + \cos 2x}}{2} and also sin2x=1cos2x2{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2} . By using these two identities the integrand can be simplified and the integration can be done easily.

Complete step-by-step answer :
Let I = sin4xcos4xdxLet{\text{ I = }}\int {{{\sin }^4}x{{\cos }^4}x} dx
Multiplying and dividing by 16,
I = (1616)sin4xcos4xdx{\text{I = }}\int {\left( {\dfrac{{16}}{{16}}} \right){{\sin }^4}x{{\cos }^4}x} dx
I = 11616sin4xcos4xdx\Rightarrow {\text{I = }}\dfrac{1}{{16}}\int {16{{\sin }^4}x{{\cos }^4}x} dx
sin2x=2sinxcosx\because \sin 2x = 2\sin x\cos x
I = 116(sin2x)4dx\Rightarrow {\text{I = }}\dfrac{1}{{16}}\int {{{\left( {\sin 2x} \right)}^4}} dx
sin2x=1cos2x\because {\sin ^2}x = 1 - {\cos ^2}x
I = 116(1cos22x)2dx\Rightarrow {\text{I = }}\dfrac{1}{{16}}\int {{{\left( {1 - {{\cos }^2}2x} \right)}^2}} dx
On expanding,
I = 116(1+cos42x2cos22x)dx\Rightarrow {\text{I = }}\dfrac{1}{{16}}\int {\left( {1 + {{\cos }^4}2x - 2{{\cos }^2}2x} \right)} dx
cos2x=1+cos2x2\because {\cos ^2}x = \dfrac{{1 + \cos 2x}}{2}
Or, cos4x=(1+cos2x2)2{\cos ^4}x = {\left( {\dfrac{{1 + \cos 2x}}{2}} \right)^2}
I = 116(1+(1+cos4x2)22(1+cos4x2))dx\therefore {\text{I = }}\dfrac{1}{{16}}\int {\left( {1 + {{\left( {\dfrac{{1 + \cos 4x}}{2}} \right)}^2} - 2\left( {\dfrac{{1 + \cos 4x}}{2}} \right)} \right)} dx
On expanding and simplifying further,
I = 116(1+(1+cos24x+2cos4x4)1cos4x)dx\therefore {\text{I = }}\dfrac{1}{{16}}\int {\left( {1 + \left( {\dfrac{{1 + {{\cos }^2}4x + 2\cos 4x}}{4}} \right) - 1 - \cos 4x} \right)} dx
On taking LCM,
I = 116(4+1+cos22x+2cos2x44cos2x)4dx\therefore {\text{I = }}\dfrac{1}{{16}}\int {\dfrac{{\left( {4 + 1 + {{\cos }^2}2x + 2\cos 2x - 4 - 4\cos 2x} \right)}}{4}} dx
On simplifying further,
I = 116(1+cos24x2cos4x)4dx\therefore {\text{I = }}\dfrac{1}{{16}}\int {\dfrac{{\left( {1 + {{\cos }^2}4x - 2\cos 4x} \right)}}{4}} dx
Or,
I = 164(1+cos24x2cos4x)dx\therefore {\text{I = }}\dfrac{1}{{64}}\int {\left( {1 + {{\cos }^2}4x - 2\cos 4x} \right)} dx
Again using cos2x=1+cos2x2{\cos ^2}x = \dfrac{{1 + \cos 2x}}{2}
I = 164(1+1+cos8x22cos4x)dx{\text{I = }}\dfrac{1}{{64}}\int {\left( {1 + \dfrac{{1 + \cos 8x}}{2} - 2\cos 4x} \right)} dx
On taking LCM,
I = 164(2+1+cos8x4cos4x)2dx\therefore {\text{I = }}\dfrac{1}{{64}}\int {\dfrac{{\left( {2 + 1 + \cos 8x - 4\cos 4x} \right)}}{2}} dx
On simplifying further,
I = 1128(3+cos8x4cos4x)dx{\text{I = }}\dfrac{1}{{128}}\int {\left( {3 + \cos 8x - 4\cos 4x} \right)} dx
On separating the terms,
I = 1128(3dx+cos8xdx4cos4x){\text{I = }}\dfrac{1}{{128}}\left( {\int {3dx + \int {\cos 8xdx - 4\int {\cos 4x} } } } \right)
I = 1128(3x+c1+(sin8x8+c2)4(sin4x4+c3))\Rightarrow {\text{I = }}\dfrac{1}{{128}}\left( {3x + {c_1} + \left( { - \dfrac{{\sin 8x}}{8} + {c_2}} \right) - 4\left( { - \dfrac{{\sin 4x}}{4} + {c_3}} \right)} \right)
Where c1, c2 and c3{c_1},{\text{ }}{c_2}{\text{ }}and{\text{ }}{c_3} are the constants of integration.
After simplifying and rearranging the terms,
I = 1128(3x+(sin8x8)+(sin4x)+C)\Rightarrow {\text{I = }}\dfrac{1}{{128}}\left( {3x + \left( { - \dfrac{{\sin 8x}}{8}} \right) + \left( {\sin 4x} \right) + C} \right)
Where C=c1 + c24c3C = {c_1}{\text{ + }}{c_2} - 4{c_3}

Note : The value of the constant can be found if the initial condition is given i.e. when x=0, the result of the integration would be some constant value, and by equating the value of the constant of integration can be found. This is indefinite-integral hence the constant of integration must be there but if it is definite-integral then the final answer would be some constant value. Also the results of the standard indefinite integral must be known so that it can be used directly.