Solveeit Logo

Question

Question: Evaluate \[{\text{7 + 77 + 777 + }}........{\text{ + }}\]up to n terms \({\text{(A) }}\dfrac{7}{{...

Evaluate 7 + 77 + 777 + ........ + {\text{7 + 77 + 777 + }}........{\text{ + }}up to n terms
(A) 781[10n+19n]{\text{(A) }}\dfrac{7}{{81}}[{10^{n + 1}} - 9n]
(B) 781[10n+19n10]{\text{(B) }}\dfrac{7}{{81}}[{10^{n + 1}} - 9n - 10]
(C) 781[10n9n10]{\text{(C) }}\dfrac{7}{{81}}[{10^n} - 9n - 10]
(D) 781[10n+1n10]{\text{(D) }}\dfrac{7}{{81}}[{10^{n + 1}} - n - 10]

Explanation

Solution

In this question we will first modify the given expression into the form of a geometric progression so that it could be represented by a formula. Then we will get the required answer.
We will make use of the sum of n terms formula which is given by
Sn=a(rn1)r1{S_n} = \dfrac{{a({r^n} - 1)}}{{r - 1}}
Here aa is the first term in the series, and rr is the division of consecutive terms and nn is the number of terms in the sequence.

Complete step-by-step answer:
It is given that the question stated as, 7 + 77 + 777 + ........ + upto n terms{\text{7 + 77 + 777 + }}........{\text{ + upto n terms}}
Since 77 is a common divisible for all the numbers, we take it as common,
=7(1 + 11 + 111 + ........ + upto n terms)= 7(1{\text{ + 11 + 111 + }}........{\text{ + upto n terms)}}
Now we will multiply and divide the expression by 99
=79(9×1 + 9×11 + 9×111 + ........ + upto n terms)= \dfrac{7}{9}(9 \times 1{\text{ + 9}} \times {\text{11 + 9}} \times {\text{111 + }}........{\text{ + upto n terms)}}
On simplifying the expression, we get:
=79(9 + 99 + 999 + ........ + upto n terms)= \dfrac{7}{9}(9{\text{ + 99 + 999 + }}........{\text{ + upto n terms)}}
Since 99 can be written as10110 - 1, 9999 can be written as 1001100 - 1 and so on, we make this change in the expression.
=79((101) + (1001) + (10001) + ........ + upto n terms)= \dfrac{7}{9}((10 - 1){\text{ + (100}} - {\text{1) + (1000}} - {\text{1) + }}........{\text{ + upto n terms)}}
On opening the bracket, we get:
=79(101 + 1001 + 10001 + ........ + upto n terms)= \dfrac{7}{9}(10 - 1{\text{ + 100}} - 1{\text{ + 1000}} - {\text{1 + }}........{\text{ + upto n terms)}}
Since there are nn terms in the distribution so there the total number of 1 - 1 in the expression will be the same as there are terms in the expression
=79(10 + 100 + 1000 + ........ + upto n termsn)= \dfrac{7}{9}(10{\text{ + 100 + 1000 + }}........{\text{ + upto n terms}} - n{\text{)}}
Now 1010 can be written as 101{10^1}, 100100 can be written as 102{10^2} and so on, therefore the expression can be written as:
=79(101 + 102 + 103 + ........ + upto n termsn)= \dfrac{7}{9}({10^1}{\text{ + 1}}{{\text{0}}^2}{\text{ + 1}}{{\text{0}}^3}{\text{ + }}........{\text{ + upto n terms}} - n{\text{)}}
Since all the terms are in a geometric progression of nn terms where a=10a = 10 and r=10210=10r = \dfrac{{{{10}^2}}}{{10}} = 10
Now we use the formula, Sn=a(rn1)r1Sn = \dfrac{{a({r^n} - 1)}}{{r - 1}}
On substituting the values, we get:
Sn=10(10n1)101Sn = \dfrac{{10({{10}^n} - 1)}}{{10 - 1}}
On simplifying we get:
Sn=10(10n1)9Sn = \dfrac{{10({{10}^n} - 1)}}{9}
Now we will add this formula to the expression:
=79(10(10n1)9n)= \dfrac{7}{9}\left( {\dfrac{{10({{10}^n} - 1)}}{9} - n} \right)
On multiply the bracket terms and we get:
=79(10n+1109n)= \dfrac{7}{9}\left( {\dfrac{{{{10}^{n + 1}} - 10}}{9} - n} \right)
Taking LCM we get,
=79(10n+1109n9)= \dfrac{7}{9}\left( {\dfrac{{{{10}^{n + 1}} - 10 - 9n}}{9}} \right)
On multiply the denominator term we get,
=781((10n+110)9n)= \dfrac{7}{{81}}(({10^{n + 1}} - 10) - 9n{\text{)}}
It could be further simplified as:
=781(10n+19n10)= \dfrac{7}{{81}}({10^{n + 1}} - 9n - 10{\text{)}}

Therefore, the correct answer is option (B)(B).

Note: In these types of questions try to convert the expressions in a format such that it could be represented using a formula of Arithmetic progression or geometric progression.
The general formula of an arithmetic progression is aa,a+da + d,a+2da + 2d, …
The nth{n^{th}} term of the arithmetic progression is Tn = a + (n - 1)d{{\text{T}}_{\text{n}}}{\text{ = a + (n - 1)d}}
Here, d=d = common difference, a=a = first term, Tn = nth term{{\text{T}}_{\text{n}}}{\text{ = }}{{\text{n}}^{{\text{th}}}}{\text{ term}}
If we selected terms will be in Arithmetic progression, then the term in the regular interval form arithmetic.