Solveeit Logo

Question

Question: Evaluate \[tan\left( {x + \dfrac{\pi }{4}} \right)\]...

Evaluate tan(x+π4)tan\left( {x + \dfrac{\pi }{4}} \right)

Explanation

Solution

Hint : We have to evaluate the value of tan(x+π4)tan\left( {x + \dfrac{\pi }{4}} \right) . We solve the question by using trigonometric identities and the values of trigonometric functions . We use the formula of tan of sum of two angles and after expanding the formula and putting the values we get the value of tan(x+π4)tan\left( {x + \dfrac{\pi }{4}} \right) .

Complete step-by-step answer :
All the trigonometric functions are classified into two categories or types as either sine function or cosine function . All the functions which lie in the category of sine functions are sin , cosec and tan functions on the other hand the functions which lie in the category of cosine functions are cos , sec and cot functions . The trigonometric functions are classified into these two categories on the basis of their property which is stated as : when the value of angle is substituted by the negative value of the angle then we get the negative value for the functions in the sine family and a positive value for the functions in the cosine family .
Given : To evaluate tan(x+π4)tan\left( {x + \dfrac{\pi }{4}} \right)
Using the formula of tan(a+b)=[tana+tanb][1tana×tanb]tan\left( {a + b} \right) = \dfrac{{\left[ {tana + tanb} \right]}}{{\left[ {1 - tana \times tanb} \right]}}
Expanding tan(x+π4)tan\left( {x + \dfrac{\pi }{4}} \right) using the above formula , we get tan(x+π4)tan\left( {x + \dfrac{\pi }{4}} \right) =[tanx+tanπ4 [1tanx×tanπ4] = \dfrac{{[tanx + tan\dfrac{\pi }{4}}}{{{\text{ [}}1 - tanx \times tan\dfrac{\pi }{4}]}}
As , tanπ4=1tan\dfrac{\pi }{4} = 1 and putting in the equation
tan(x+π4)=[tanx+1][1tanx]tan\left( {x + \dfrac{\pi }{4}} \right) = \dfrac{{\left[ {tanx + 1} \right]}}{{\left[ {1 - tanx} \right]}}
Hence , the value of tan(x+π4)=[1+tanx][1tanx]tan\left( {x + \dfrac{\pi }{4}} \right) = \dfrac{{\left[ {1 + tanx} \right]}}{{\left[ {1 - tanx} \right]}}
So, the correct answer is “Option B”.

Note : We have various trigonometric formulas used to solve the problem
The various trigonometric formulas used :
sin(a+b)=sina×cosb+sinb×cosasin\left( {a + b} \right) = sina \times cosb + sinb \times cosa
sin(ab)=sina×cosbsinb×cosasin\left( {a - b} \right) = sina \times cosb - sinb \times cosa
cos(a+b)=cosa×cosbsinb×sinacos\left( {a + b} \right) = cosa \times cosb - sinb \times sina
cos(ab)=cosa×cosb+sinb×sinacos\left( {a - b} \right) = cosa \times cosb + sinb \times sina
All the trigonometric functions are positive in first quadrant , the sin function are positive in second quadrant and rest are negative , the tan function are positive in third quadrant and rest are negative , the cos function are positive in fourth quadrant and rest are negative .