Solveeit Logo

Question

Question: Evaluate \[\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta }...

Evaluate tan(π4+θ)tan(π4θ)=\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) =
A. 2tan2θ2\tan 2\theta
B. 2cotθ2\cot \theta
C. tan2θ\tan 2\theta
D. cot2θ\cot 2\theta

Explanation

Solution

We can solve this using the tangent sum and difference formula. That is we have tangent sum formula tan(A+B)=tanA+tanB1tanA.tanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A.\tan B}} and tangent difference formula tan(AB)=tanAtanB1+tanA.tanB\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A.\tan B}}. After applying the formula we use algebraic identities (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab and (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab to simplify it.

Complete step by step answer:
Given tan(π4+θ)tan(π4θ)(1)\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) - - - (1)
Now take tan(π4+θ)\tan \left( {\dfrac{\pi }{4} + \theta } \right) and applying tangent sum formula that is tan(A+B)=tanA+tanB1tanA.tanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A.\tan B}}.
Then
tan(π4+θ)=tan(π4)+tanθ1tan(π4).tanθ\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) = \dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) + \tan \theta }}{{1 - \tan \left( {\dfrac{\pi }{4}} \right).\tan \theta }}
We know tan(π4)=1\tan \left( {\dfrac{\pi }{4}} \right) = 1 then
tan(π4+θ)=1+tanθ1tanθ(2)\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) = \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} - - - (2)

Now similarly take tan(π4θ)\tan \left( {\dfrac{\pi }{4} - \theta } \right) and apply the tangent difference formula that is tan(AB)=tanAtanB1+tanA.tanB\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A.\tan B}}. Then we have
tan(π4θ)=tan(π4)tanθ1+tan(π4).tanθ\Rightarrow \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) - \tan \theta }}{{1 + \tan \left( {\dfrac{\pi }{4}} \right).\tan \theta }}
We know tan(π4)=1\tan \left( {\dfrac{\pi }{4}} \right) = 1 then
tan(π4θ)=1tanθ1+tanθ(3)\Rightarrow \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{1 - \tan \theta }}{{1 + \tan \theta }} - - - - (3)
Now substituting equation (2) and (3) in (1) we have,
tan(π4+θ)tan(π4θ)=1+tanθ1tanθ1tanθ1+tanθ\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} - \dfrac{{1 - \tan \theta }}{{1 + \tan \theta }}
tan(π4+θ)tan(π4θ)=1+tanθ1tanθ1tanθ1+tanθ\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right)= \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} - \dfrac{{1 - \tan \theta }}{{1 + \tan \theta }}

Taking LCM and simplifying we have,
tan(π4+θ)tan(π4θ)=[(1+tanθ)(1+tanθ)][(1tanθ)(1tanθ)](1tanθ)(1+tanθ)\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{\left[ {\left( {1 + \tan \theta } \right)\left( {1 + \tan \theta } \right)} \right] - \left[ {\left( {1 - \tan \theta } \right)\left( {1 - \tan \theta } \right)} \right]}}{{\left( {1 - \tan \theta } \right)\left( {1 + \tan \theta } \right)}}
We know the (ab)(a+b)=a2b2(a - b)(a + b) = {a^2} - {b^2}.
tan(π4+θ)tan(π4θ)=[(1+tanθ)2][(1tanθ)2]12tan2θ\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right)= \dfrac{{\left[ {{{\left( {1 + \tan \theta } \right)}^2}} \right] - \left[ {{{\left( {1 - \tan \theta } \right)}^2}} \right]}}{{{1^2} - {{\tan }^2}\theta }}
Now we use (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab and (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab, then
tan(π4+θ)tan(π4θ)=[12+tan2θ+2tanθ][12+tan2θ2tanθ]12tan2θ\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{\left[ {{1^2} + {{\tan }^2}\theta + 2\tan \theta } \right] - \left[ {{1^2} + {{\tan }^2}\theta - 2\tan \theta } \right]}}{{{1^2} - {{\tan }^2}\theta }}

Expanding the brackets we have,
tan(π4+θ)tan(π4θ)=1+tan2θ+2tanθ1tan2θ+2tanθ1tan2θ\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right)= \dfrac{{1 + {{\tan }^2}\theta + 2\tan \theta - 1 - {{\tan }^2}\theta + 2\tan \theta }}{{1 - {{\tan }^2}\theta }}
tan(π4+θ)tan(π4θ)=2tanθ+2tanθ1tan2θ\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{2\tan \theta + 2\tan \theta }}{{1 - {{\tan }^2}\theta }}
tan(π4+θ)tan(π4θ)=4tanθ1tan2θ\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{4\tan \theta }}{{1 - {{\tan }^2}\theta }}.
This is the simplified form but it is not matching with the given option. So we need to simply this further,
tan(π4+θ)tan(π4θ)=2×(2tanθ)1tan2θ\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{2 \times \left( {2\tan \theta } \right)}}{{1 - {{\tan }^2}\theta }}

We can write 2tanθ=tanθ+tanθ2\tan \theta = \tan \theta + \tan \theta and also tan2θ=tanθtanθ{\tan ^2}\theta = \tan \theta \tan \theta .
tan(π4+θ)tan(π4θ)=2×(tanθ+tanθ)1tanθ.tanθ\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{{2 \times \left( {\tan \theta + \tan \theta } \right)}}{{1 - \tan \theta .\tan \theta }}
If we observe we have a tangent sum rule,
tan(π4+θ)tan(π4θ)=2×((tanθ+tanθ)1tanθ.tanθ)\tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = 2 \times \left( {\dfrac{{\left( {\tan \theta + \tan \theta } \right)}}{{1 - \tan \theta .\tan \theta }}} \right)
tan(π4+θ)tan(π4θ)=2×tan(θ+θ)\Rightarrow \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = 2 \times \tan \left( {\theta + \theta } \right)
tan(π4+θ)tan(π4θ)=2tan(2θ)\therefore \tan \left( {\dfrac{\pi }{4} + \theta } \right) - \tan \left( {\dfrac{\pi }{4} - \theta } \right) = 2\tan \left( {2\theta } \right).

Hence the correct answer is option A.

Note: We also have sine and cosine sum and difference formulas. We have sine sum and difference formula that is sin(A+B)=sinA.cosB+cosA.sinB\sin \left( {A + B} \right) = \sin A.\cos B + \cos A.\sin B and sin(AB)=sinA.cosBcosA.sinB\sin \left( {A - B} \right) = \sin A.\cos B - \cos A.\sin B. The cosine sum and difference formula is cos(A+B)=cosA.cosBsinA.sinB\cos (A + B) = \cos A.\cos B - \sin A.\sin B and cos(AB)=cosA.cosB+sinA.sinB\cos (A - B) = \cos A.\cos B + \sin A.\sin B. We use them depending on the given problem. In above while expanding the brackets we have to be careful regarding the negative sign. We know that the product of two negative numbers results in a positive number. Also the product of positive (negative) numbers and negative (positive) numbers results in negative numbers.