Question
Question: Evaluate \(\tan 10^\circ \cdot \tan 20^\circ \cdot \tan 40^\circ \cdot \tan 45^\circ \cdot \tan 50^\...
Evaluate tan10∘⋅tan20∘⋅tan40∘⋅tan45∘⋅tan50∘⋅tan70∘⋅tan80∘
Solution
Here, we are required to find the value of tan10∘⋅tan20∘⋅tan40∘⋅tan45∘⋅tan50∘⋅tan70∘⋅tan80∘. Hence, we will use the trigonometric identities of the relationship between tanθ and cotθ. Using those identities in this question, we will be able to simplify it further. Also, using the trigonometric tables, we can substitute the value of tan45∘. Thus, this will help us to evaluate the given trigonometric expression where various tangent angles are multiplying with each other.
Formula Used:
1.tanθ=cot(90∘−θ)
2.cotθ=tanθ1
Complete step-by-step answer:
To find: tan10∘⋅tan20∘⋅tan40∘⋅tan45∘⋅tan50∘⋅tan70∘⋅tan80∘
Now, we will the formula: tanθ=cot(90∘−θ)
Here, substituting θ=10∘
⇒tan10∘=cot(90∘−10∘)=cot80∘
Again, substituting θ=20∘
⇒tan20∘=cot(90∘−20∘)=cot70∘
And, substituting θ=40∘
⇒tan40∘=cot(90∘−40∘)=cot50∘
Hence, substituting the values of tan10∘,tan20∘ and tan40∘in the question, we get,
tan10∘⋅tan20∘⋅tan40∘⋅tan45∘⋅tan50∘⋅tan70∘⋅tan80∘ =cot80∘⋅cot70∘⋅cot50∘⋅tan45∘⋅tan50∘⋅tan70∘⋅tan80∘
Now, we know that,
cotθ=tanθ1
Hence, using this formula, we get,
⇒tan10∘⋅tan20∘⋅tan40∘⋅tan45∘⋅tan50∘⋅tan70∘⋅tan80∘ =tan80∘1⋅tan70∘1⋅tan50∘1⋅tan45∘⋅tan50∘⋅tan70∘⋅tan80∘
⇒tan10∘⋅tan20∘⋅tan40∘⋅tan45∘⋅tan50∘⋅tan70∘⋅tan80∘ =(tan80∘1×tan80∘)⋅(tan70∘1×tan70∘)⋅(tan50∘1×tan50∘)⋅tan45∘
Also, using the trigonometric tables, we know that, tan45∘=1
⇒tan10∘⋅tan20∘⋅tan40∘⋅tan45∘⋅tan50∘⋅tan70∘⋅tan80∘=1×1×1×1
⇒tan10∘⋅tan20∘⋅tan40∘⋅tan45∘⋅tan50∘⋅tan70∘⋅tan80∘=1
Thus, the value of tan10∘⋅tan20∘⋅tan40∘⋅tan45∘⋅tan50∘⋅tan70∘⋅tan80∘is 1.
This is the required answer.
Note: This question involved Trigonometry which is a branch of mathematics which helps us to study the relationship between the sides and the angles of a triangle. In practical life, trigonometry is used by cartographers (to make maps). It is also used by the aviation and naval industries. In fact, trigonometry is even used by Astronomers to find the distance between two stars. Hence, it has an important role to play in everyday life. The three most common trigonometric functions are the tangent function, the sine and the cosine function. In the simple terms they are written as ‘sin’, ‘cos’ and ‘tan’.