Solveeit Logo

Question

Question: Evaluate: \[{\tan ^{ - 1}}\left( 1 \right) + {\cos ^{ - 1}}\left( { - \dfrac{1}{2}} \right) + {\sin ...

Evaluate: tan1(1)+cos1(12)+sin1(12){\tan ^{ - 1}}\left( 1 \right) + {\cos ^{ - 1}}\left( { - \dfrac{1}{2}} \right) + {\sin ^{ - 1}}\left( { - \dfrac{1}{2}} \right).

Explanation

Solution

Here, we need to find the value of the given expression. We will simplify each of these equations using trigonometric ratios of specific angles. Then, we will rewrite and simplify the given expression to get the required answer.

Complete step by step solution:
Let tan1(1)=θ{\tan ^{ - 1}}\left( 1 \right) = \theta , cos1(12)=α{\cos ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = \alpha , and sin1(12)=β{\sin ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = \beta .
Therefore, the expression becomes
tan1(1)+cos1(12)+sin1(12)=θ+α+β\Rightarrow {\tan ^{ - 1}}\left( 1 \right) + {\cos ^{ - 1}}\left( { - \dfrac{1}{2}} \right) + {\sin ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = \theta + \alpha + \beta
First, we will simplify the equation tan1(1)=θ{\tan ^{ - 1}}\left( 1 \right) = \theta .
Rewriting the equation tan1(1)=θ{\tan ^{ - 1}}\left( 1 \right) = \theta , we get
tanθ=1\tan \theta = 1
The tangent of the angle measuring π4\dfrac{\pi }{4} is equal to 1.
Thus, we get
tanπ4=1\tan \dfrac{\pi }{4} = 1
From the equations tanθ=1\tan \theta = 1 and tanπ4=1\tan \dfrac{\pi }{4} = 1, we get
tanθ=tanπ4\Rightarrow \tan \theta = \tan \dfrac{\pi }{4}
Therefore, we get
θ=π4\Rightarrow \theta = \dfrac{\pi }{4}
Now, we will simplify the equation cos1(12)=α{\cos ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = \alpha .
Rewriting the equation cos1(12)=α{\cos ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = \alpha , we get
cosα=12\cos \alpha = - \dfrac{1}{2}
The trigonometric ratio cosine is negative in the second and third quadrant.
The cosine of an angle πx\pi - x, is equal to the negative of the cosine of angle xx, where xx is an acute angle.
Therefore, we get
cos(πx)=cosx\Rightarrow \cos \left( {\pi - x} \right) = - \cos x
Substituting x=π3x = \dfrac{\pi }{3} in the equation, we get
cos(ππ3)=cosπ3\Rightarrow \cos \left( {\pi - \dfrac{\pi }{3}} \right) = - \cos \dfrac{\pi }{3}
We know that cosπ3=12\cos \dfrac{\pi }{3} = \dfrac{1}{2}.
Therefore, we get
cos(ππ3)=12 cos2π3=12\begin{array}{l} \Rightarrow \cos \left( {\pi - \dfrac{\pi }{3}} \right) = - \dfrac{1}{2}\\\ \Rightarrow \cos \dfrac{{2\pi }}{3} = - \dfrac{1}{2}\end{array}
From the equations cosα=12\cos \alpha = - \dfrac{1}{2} and cos2π3=12\cos \dfrac{{2\pi }}{3} = - \dfrac{1}{2}, we get
cosα=cos2π3\Rightarrow \cos \alpha = \cos \dfrac{{2\pi }}{3}
Therefore, we get
α=2π3\Rightarrow \alpha = \dfrac{{2\pi }}{3}
Next, we will simplify the equation sin1(12)=β{\sin ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = \beta .
Rewriting the equation sin1(12)=β{\sin ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = \beta , we get
sinβ=12\sin \beta = - \dfrac{1}{2}
The trigonometric ratio sine is negative in the third and fourth quadrant.
The sine of an angle x - x, is equal to the negative of the sine of angle xx, where xx is an acute angle.
Therefore, we get
sin(x)=sinx\Rightarrow \sin \left( { - x} \right) = - \sin x
Substituting x=π6x = \dfrac{\pi }{6} in the equation, we get
sin(π6)=sinπ6\Rightarrow \sin \left( { - \dfrac{\pi }{6}} \right) = - \sin \dfrac{\pi }{6}
We know that sinπ6=12\sin \dfrac{\pi }{6} = \dfrac{1}{2}.
Therefore, we get
sin(π6)=12\Rightarrow \sin \left( { - \dfrac{\pi }{6}} \right) = - \dfrac{1}{2}
From the equations sinβ=12\sin \beta = - \dfrac{1}{2} and sin(π6)=12\sin \left( { - \dfrac{\pi }{6}} \right) = - \dfrac{1}{2}, we get
sinβ=sin(π6)\Rightarrow \sin \beta = \sin \left( { - \dfrac{\pi }{6}} \right)
Therefore, we get
β=π6\Rightarrow \beta = - \dfrac{\pi }{6}
Now, we will evaluate the given expression.
Substituting θ=π4\theta = \dfrac{\pi }{4}, α=2π3\alpha = \dfrac{{2\pi }}{3}, and β=π6\beta = - \dfrac{\pi }{6} in the equation tan1(1)+cos1(12)+sin1(12)=θ+α+β{\tan ^{ - 1}}\left( 1 \right) + {\cos ^{ - 1}}\left( { - \dfrac{1}{2}} \right) + {\sin ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = \theta + \alpha + \beta , we get
tan1(1)+cos1(12)+sin1(12)=π4+2π3+(π6)\Rightarrow {\tan ^{ - 1}}\left( 1 \right) + {\cos ^{ - 1}}\left( { - \dfrac{1}{2}} \right) + {\sin ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = \dfrac{\pi }{4} + \dfrac{{2\pi }}{3} + \left( { - \dfrac{\pi }{6}} \right)
Simplifying the expression, we get
tan1(1)+cos1(12)+sin1(12)=π4+2π3π6\Rightarrow {\tan ^{ - 1}}\left( 1 \right) + {\cos ^{ - 1}}\left( { - \dfrac{1}{2}} \right) + {\sin ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = \dfrac{\pi }{4} + \dfrac{{2\pi }}{3} - \dfrac{\pi }{6}
Taking the L.C.M., we get
tan1(1)+cos1(12)+sin1(12)=3π+8π2π12\Rightarrow {\tan ^{ - 1}}\left( 1 \right) + {\cos ^{ - 1}}\left( { - \dfrac{1}{2}} \right) + {\sin ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = \dfrac{{3\pi + 8\pi - 2\pi }}{{12}}
Adding and subtracting the like terms, we get
tan1(1)+cos1(12)+sin1(12)=9π12=3π4\Rightarrow {\tan ^{ - 1}}\left( 1 \right) + {\cos ^{ - 1}}\left( { - \dfrac{1}{2}} \right) + {\sin ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = \dfrac{{9\pi }}{{12}} = \dfrac{{3\pi }}{4}

\therefore The value of the given expression is 3π4\dfrac{{3\pi }}{4}.

Note:
Here, we need to remember the range of the trigonometric inverse functions. The range of tan1(x){\tan ^{ - 1}}\left( x \right) is (π2,π2)\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right), the range of cos1(x){\cos ^{ - 1}}\left( x \right) is [0,π]\left[ {0,\pi } \right], and the range of sin1(x){\sin ^{ - 1}}\left( x \right) is [π2,π2]\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right].
A common mistake is to use either cos4π3=12\cos \dfrac{{4\pi }}{3} = - \dfrac{1}{2}, or sin7π6=12\sin \dfrac{{7\pi }}{6} = - \dfrac{1}{2}, or both. This is because if cos4π3=12\cos \dfrac{{4\pi }}{3} = - \dfrac{1}{2}, then cos1(12)=4π3{\cos ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = \dfrac{{4\pi }}{3}, which does not lie in the range of cos1(x){\cos ^{ - 1}}\left( x \right), that is [0,π]\left[ {0,\pi } \right]. Similarly, if sin7π6=12\sin \dfrac{{7\pi }}{6} = - \dfrac{1}{2}, then sin1(12)=7π6{\sin ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = \dfrac{{7\pi }}{6}, which does not lie in the range of sin1(x){\sin ^{ - 1}}\left( x \right), that is [π2,π2]\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right].