Solveeit Logo

Question

Question: Evaluate \[ \sum_{k=1}^{100} \frac{1\cdot4}{2}+\frac{1\cdot4\cdot7}{2\cdot5}+\frac{1\cdot4\cdot7\cdo...

Evaluate

k=1100142+14725+14710258+\sum_{k=1}^{100} \frac{1\cdot4}{2}+\frac{1\cdot4\cdot7}{2\cdot5}+\frac{1\cdot4\cdot7\cdot10}{2\cdot5\cdot8}+\dots
Answer

12(1473012582993)\frac{1}{2}\left(\frac{1\cdot4\cdot7\cdot\ldots\cdot301}{2\cdot5\cdot8\cdot\ldots\cdot299}-3\right)

Explanation

Solution

Let Tk=147(3k2)258(3k1)T_k = \frac{1\cdot4\cdot7\cdot\dots\cdot(3k-2)}{2\cdot5\cdot8\cdot\dots\cdot(3k-1)}. We want to evaluate k=1100Tk\sum_{k=1}^{100} T_k. The general term is Tk=147(3k2)258(3k1)T_k = \frac{1\cdot4\cdot7\cdot\dots\cdot(3k-2)}{2\cdot5\cdot8\cdot\dots\cdot(3k-1)}.

The sum of nn terms is given by the formula:

Sn=12(147(3n2)(3n+1)258(3n1)3)S_n = \frac{1}{2} \left( \frac{1 \cdot 4 \cdot 7 \cdot \ldots \cdot (3n-2) \cdot (3n+1)}{2 \cdot 5 \cdot 8 \cdot \ldots \cdot (3n-1)} - 3 \right).

Substituting n=100n=100:

k=1100Tk=12(147(31002)(3100+1)258(31001)3)\sum_{k=1}^{100} T_k = \frac{1}{2} \left( \frac{1 \cdot 4 \cdot 7 \cdot \ldots \cdot (3 \cdot 100-2) \cdot (3 \cdot 100+1)}{2 \cdot 5 \cdot 8 \cdot \ldots \cdot (3 \cdot 100-1)} - 3 \right)

k=1100Tk=12(1472983012582993)\sum_{k=1}^{100} T_k = \frac{1}{2} \left( \frac{1 \cdot 4 \cdot 7 \cdot \ldots \cdot 298 \cdot 301}{2 \cdot 5 \cdot 8 \cdot \ldots \cdot 299} - 3 \right).

Therefore, the final answer is 12(1473012582993)\frac{1}{2}\left(\frac{1\cdot4\cdot7\cdot\ldots\cdot301}{2\cdot5\cdot8\cdot\ldots\cdot299}-3\right).