Solveeit Logo

Question

Question: Evaluate \[\sin \left( {\dfrac{{2\pi }}{3}} \right)\] ?...

Evaluate sin(2π3)\sin \left( {\dfrac{{2\pi }}{3}} \right) ?

Explanation

Solution

Hint : Here in this question, we have to find the exact value of a given trigonometric function by using the sine sum or difference identity. First rewrite the given angle in the form of addition or difference, then the standard trigonometric formula sine sum i.e., sin(A+B)\sin (A + B) or sine difference i.e., sin(AB)sin(A - B) identity defined as sinA.cosB+cosA.sinB\sin A.cosB + cosA.sinB and sinA.cosBcosA.sinBsinA.cosB - cosA.sinB using one of these we get the required value.

Complete step-by-step answer :
To evaluate the given question by using a formula of cosine addition defined as the sine addition formula calculates the sine of an angle that is either the sum or difference of two other angles. It arises from the law of sines and the distance formula. By using the sine addition formula, the cosine of both the sum and difference of two angles can be found with the two angles' sines and cosines.
Consider the given function
sin(2π3)\sin \left( {\dfrac{{2\pi }}{3}} \right) -------(1)
The angle 2π3\dfrac{{2\pi }}{3} can be written as ππ3\pi - \dfrac{\pi }{3} , then
Equation (1) becomes
sin(ππ3)\Rightarrow \sin \left( {\pi - \dfrac{\pi }{3}} \right) ------(2)
Apply the trigonometric cosine identity of difference sin(AB)=\sin (A - B) = sinA.cosBcosA.sinBsinA.cosB - cosA.sinB .
Here A=πA = \pi and B=π3B = \dfrac{\pi }{3}
Substitute A and B in formula then
sin(ππ3)=sinπ.cosπ3cosπ.sinπ3\Rightarrow \sin \left( {\pi - \dfrac{\pi }{3}} \right) = sin\pi .cos\dfrac{\pi }{3} - cos\pi .sin\dfrac{\pi }{3}
By using specified cosine and sine angle i.e., cosπ3=12cos\dfrac{\pi }{3} = \dfrac{1}{2} , cosπ=1cos\pi = - 1 , sinπ3=32sin\dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2} and sinπ=0sin\pi = 0
On, Substituting the values, we have
sin(ππ3)=(0).(12)(1).32\Rightarrow \sin \left( {\pi - \dfrac{\pi }{3}} \right) = (0).\left( {\dfrac{1}{2}} \right) - ( - 1).\dfrac{{\sqrt 3 }}{2}
On simplification we get
sin(ππ3)=0+32\Rightarrow \sin \left( {\pi - \dfrac{\pi }{3}} \right) = 0 + \dfrac{{\sqrt 3 }}{2}
sin(2π3)=32\Rightarrow \sin \left( {\dfrac{{2\pi }}{3}} \right) = \dfrac{{\sqrt 3 }}{2}
Hence, the exact functional value of sin(2π3)=32\sin \left( {\dfrac{{2\pi }}{3}} \right) = \dfrac{{\sqrt 3 }}{2} .
So, the correct answer is “ 32 \dfrac{{\sqrt 3 }}{2} ”.

Note : Simply this can also be solve by using a ASTC rule i.e.,
sin(2π3)=sin(ππ3)\Rightarrow \sin \left( {\dfrac{{2\pi }}{3}} \right) = \sin \left( {\pi - \dfrac{\pi }{3}} \right)
By using the ASTC rule of trigonometry, the angle ππ3\pi - \dfrac{\pi }{3} or angle 180θ180 - \theta lies in the second quadrant. sine function is positive here, hence the angle must in positive, then
sin(2π3)=sin(π3)\Rightarrow \sin \left( {\dfrac{{2\pi }}{3}} \right) = \sin \left( {\dfrac{\pi }{3}} \right)
sin(2π3)=32\Rightarrow \sin \left( {\dfrac{{2\pi }}{3}} \right) = \dfrac{{\sqrt 3 }}{2}
While solving this type of question, we must know about the ASTC rule.
And also know the cosine sum or difference identity, for this we have a standard formula. To find the value for the trigonometry function we need the table of trigonometry ratios for standard angles.