Solveeit Logo

Question

Mathematics Question on limits and derivatives

Evaluate of the following limits. =limx2=\displaystyle \lim_{x \to 2} \left\\{\frac{\left(x^{2}-4\right)}{\sqrt{3x-2}-\sqrt{x+2}} \right\\}=

A

88

B

1616

C

5-5

D

8-8

Answer

88

Explanation

Solution

=limx2=\displaystyle \lim_{x \to 2} \left\\{\frac{\left(x^{2}-4\right)}{\sqrt{3x-2}-\sqrt{x+2}} \right\\} =limx2=\displaystyle \lim_{x \to 2} \left\\{\frac{\left(x^{2}-4\right)}{\sqrt{3x-2}-\sqrt{x+2}} \times \frac{\left(\sqrt{3x-2}+\sqrt{x+2}\right)}{\left(\sqrt{3x-2}+\sqrt{x+2}\right)}\right\\} =limx2=\displaystyle \lim_{x \to 2} \left\\{\frac{\left(x^{2}-4\right)\left(\sqrt{3x-2}+\sqrt{x+2}\right)}{\left(3x-2\right)-\left(x+2\right)} \right\\} =limx2=\displaystyle \lim_{x \to 2} \left\\{\frac{\left(x^{2}-4\right)\left(\sqrt{3x-2}+\sqrt{x+2}\right)}{2\left(x-2\right)} \right\\} =limx2=\displaystyle \lim_{x \to 2} \left\\{\frac{\left(x+2\right)\left(\sqrt{3x-2}+\sqrt{x+2}\right)}{2} \right\\}=8