Question
Mathematics Question on limits and derivatives
Evaluate of the following limits. =x→2lim \left\\{\frac{\left(x^{2}-4\right)}{\sqrt{3x-2}-\sqrt{x+2}} \right\\}=
A
8
B
16
C
−5
D
−8
Answer
8
Explanation
Solution
=x→2lim \left\\{\frac{\left(x^{2}-4\right)}{\sqrt{3x-2}-\sqrt{x+2}} \right\\} =x→2lim \left\\{\frac{\left(x^{2}-4\right)}{\sqrt{3x-2}-\sqrt{x+2}} \times \frac{\left(\sqrt{3x-2}+\sqrt{x+2}\right)}{\left(\sqrt{3x-2}+\sqrt{x+2}\right)}\right\\} =x→2lim \left\\{\frac{\left(x^{2}-4\right)\left(\sqrt{3x-2}+\sqrt{x+2}\right)}{\left(3x-2\right)-\left(x+2\right)} \right\\} =x→2lim \left\\{\frac{\left(x^{2}-4\right)\left(\sqrt{3x-2}+\sqrt{x+2}\right)}{2\left(x-2\right)} \right\\} =x→2lim \left\\{\frac{\left(x+2\right)\left(\sqrt{3x-2}+\sqrt{x+2}\right)}{2} \right\\}=8