Solveeit Logo

Question

Question: Evaluate : \(\int _ { 0 } ^ { 1 } \cot ^ { - 1 }\)(1 – x + x<sup>2</sup>) dx -...

Evaluate : 01cot1\int _ { 0 } ^ { 1 } \cot ^ { - 1 }(1 – x + x2) dx -

A

π2\frac { \pi } { 2 } – ln 2

B

π2\frac { \pi } { 2 } – ln 4

C

π4\frac { \pi } { 4 } – ln 2

D

None

Answer

π2\frac { \pi } { 2 } – ln 2

Explanation

Solution

Let I = 01cot1\int _ { 0 } ^ { 1 } \cot ^ { - 1 } (1 – x + x2) dx

= 01cot1\int _ { 0 } ^ { 1 } \cot ^ { - 1 }(1 – x (1 – x)) dx

(Q 0 £ x < 1)

= 01tan1\int _ { 0 } ^ { 1 } \tan ^ { - 1 }dx

= 01tan1\int _ { 0 } ^ { 1 } \tan ^ { - 1 }dx

= 01(tan1x+tan1(1x))\int _ { 0 } ^ { 1 } \left( \tan ^ { - 1 } x + \tan ^ { - 1 } ( 1 - x ) \right)dx

=

(From property)

= 2dx

Integrating by parts taking unity as the second function, we have

I = 2

= 2

= 2 [π412ln2]\left[ \frac { \pi } { 4 } - \frac { 1 } { 2 } \ln 2 \right]

Hence I =π2\frac { \pi } { 2 } – ln 2.