Solveeit Logo

Question

Question: Evaluate : \(\int _ { - 2 } ^ { 2 } \max\){x + \|x\|, x – [x]} dx, where [x] denotes the greatest in...

Evaluate : 22max\int _ { - 2 } ^ { 2 } \max{x + |x|, x – [x]} dx, where [x] denotes the greatest integer £ x –

A

4

B

3

C

5

D

1

Answer

5

Explanation

Solution

22max\int _ { - 2 } ^ { 2 } \max{x + |x|, x – [x]} dx

= 20max\int _ { - 2 } ^ { 0 } \max {0, x – [x]} dx + 02max\int _ { 0 } ^ { 2 } \max {2x, x – [x]}dx

the graph of ƒ(x) = max {x + |x|, x – [x]} is shown as in figure

therefore 22max\int _ { - 2 } ^ { 2 } \max{x + |x|, x – [x]} dx = Area of shaded region

= 2 (12×1×1)\left( \frac { 1 } { 2 } \times 1 \times 1 \right) + 12\frac { 1 } { 2 } × 2 × 4

= 1 + 4

= 5.