Question
Question: Evaluate \(\int \frac { d x } { x + \sqrt { x ^ { 2 } - x + 1 } }\) \(\left( \text{Where}t = \frac{\...
Evaluate ∫x+x2−x+1dx (Wheret=xx2−x+1+1)
A
2loge∣t∣−21loge∣t−1∣−23loge∣t+1∣+(t+1)3+c
B
2loge∣t∣+21loge∣t−1∣+23loge∣t+1∣+(t+1)3+c
C
2loge∣t∣−21loge∣t−1∣+23loge∣t+1∣+(t+1)3+c
D
None of these
Answer
2loge∣t∣−21loge∣t−1∣−23loge∣t+1∣+(t+1)3+c
Explanation
Solution
Since here c=1, we can apply the second Euler substitution.
x2−x+1=tx−1
Hence (2t−1)x=(t2−1)x2; x=t2−12t−1
∴dx=(t2−1)22(t2−t+1)dt and x+x2−x+1=t−11
∴I=∫x+x2−x+1dx⥂=∫t(t−1)(t+1)2−2t2+2t−2⥂dt⥂Using partial
fractions, we have,
t(t−1)(t+1)2−2t2+2t−2=tA+t−1B+(t+1)C+(t+1)2D
or (−2t+2t−2)=A(t−1)(t+1)2+B(t+1)2+C(t−1)(t+1)t+Dt. We get A=2,B=1/2,C=−3/2,D=−3.
Hence (Wheret=xx2−x+1+1)