Solveeit Logo

Question

Question: Evaluate :\(\lim _ { x \rightarrow 0 }\) \(\left( \frac{\sin x}{x} \right)^{\frac{\sin x}{x - \sin x...

Evaluate :limx0\lim _ { x \rightarrow 0 } (sinxx)sinxxsinx\left( \frac{\sin x}{x} \right)^{\frac{\sin x}{x - \sin x}}.

A

e–1

B

e

C

e2

D

None of these

Answer

e–1

Explanation

Solution

Limit = limx0\lim _ { x \rightarrow 0 } (sinxx)sinxx1sinxx\left( \frac { \sin x } { x } \right) ^ { \frac { \frac { \sin x } { x } } { 1 - \frac { \sin x } { x } } }

Put = t; then t → 1 when x → 0.

∴ limit = limt1\lim _ { t \rightarrow 1 } , which is of the form 1

= =

= (Using L’ Hospital’s rule)

= e–1.