Solveeit Logo

Question

Question: Evaluate: \[\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^{15}} - 1}}{{{x^{10}} - 1}}\]....

Evaluate: limx1x151x101\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^{15}} - 1}}{{{x^{10}} - 1}}.

Explanation

Solution

First we will first put x=1x = 1 in the above equation and check if it is in the 00\dfrac{0}{0} form. If it is then we will solve the above equation by using the theorem, limxaxnanxa=nan1\mathop {\lim }\limits_{x \to a} \dfrac{{{x^n} - {a^n}}}{{x - a}} = n{a^{n - 1}}to find the required value.

Complete step by step answer:

We are given
limx1x151x101 ......eq.(1)\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^{15}} - 1}}{{{x^{10}} - 1}}{\text{ ......eq.(1)}}

Putting x=1x = 1 in the above equation, we get

11511101 1111 00  \Rightarrow \dfrac{{{1^{15}} - 1}}{{{1^{10}} - 1}} \\\ \Rightarrow \dfrac{{1 - 1}}{{1 - 1}} \\\ \Rightarrow \dfrac{0}{0} \\\

Since it is of the form 00\dfrac{0}{0}.

Dividing the numerator and denominator of the equation (1) by x1x - 1, we get

limx1(x151x1)(x101x1) limx1(x15115x1)(x10110x1)  \Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {\dfrac{{{x^{15}} - 1}}{{x - 1}}} \right)}}{{\left( {\dfrac{{{x^{10}} - 1}}{{x - 1}}} \right)}} \\\ \Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {\dfrac{{{x^{15}} - {1^{15}}}}{{x - 1}}} \right)}}{{\left( {\dfrac{{{x^{10}} - {1^{10}}}}{{x - 1}}} \right)}} \\\

So, we will solve the above equation by using the theorem on limits, limxaxnanxa=nan1\mathop {\lim }\limits_{x \to a} \dfrac{{{x^n} - {a^n}}}{{x - a}} = n{a^{n - 1}}.

15(1)1410(1)9 15(1)10(1) 1510 32  \Rightarrow \dfrac{{15{{\left( 1 \right)}^{14}}}}{{10{{\left( 1 \right)}^9}}} \\\ \Rightarrow \dfrac{{15\left( 1 \right)}}{{10\left( 1 \right)}} \\\ \Rightarrow \dfrac{{15}}{{10}} \\\ \Rightarrow \dfrac{3}{2} \\\

Note: Students should be familiar with the formula to find the limits and the theorems, as some get confused while applying the formulae. When a limit approaches to a number aa, it does not mean the function is not equal to aa. We know that any power of 1 is always 1. We will not use the limit on the left equation after removing the variable xx. Avoid calculation mistakes.