Question
Question: Evaluate: $\log_3 4 . \log_4 5 . \log_5 6 . \log_6 7 . \log_7 8 . \log_8 9$...
Evaluate: log34.log45.log56.log67.log78.log89

Answer
2
Explanation
Solution
To evaluate the given expression, we use the change of base formula for logarithms, which states that logba=logcblogca. Using the natural logarithm (ln) as the base: log34⋅log45⋅log56⋅log67⋅log78⋅log89 Applying the change of base formula to each term: (ln3ln4)⋅(ln4ln5)⋅(ln5ln6)⋅(ln6ln7)⋅(ln7ln8)⋅(ln8ln9) This results in a telescoping product where intermediate terms cancel out: ln3ln4⋅ln4ln5⋅ln5ln6⋅ln6ln7⋅ln7ln8⋅ln8ln9=ln3ln9 Using the change of base formula in reverse or evaluating directly: ln3ln9=log39 Since 9=32: log39=log3(32) Using the logarithm property logb(bx)=x: log3(32)=2 Thus, the value of the expression is 2.