Solveeit Logo

Question

Question: Evaluate: $\log_3 4 . \log_4 5 . \log_5 6 . \log_6 7 . \log_7 8 . \log_8 9$...

Evaluate: log34.log45.log56.log67.log78.log89\log_3 4 . \log_4 5 . \log_5 6 . \log_6 7 . \log_7 8 . \log_8 9

Answer

2

Explanation

Solution

To evaluate the given expression, we use the change of base formula for logarithms, which states that logba=logcalogcb\log_b a = \frac{\log_c a}{\log_c b}. Using the natural logarithm (ln) as the base: log34log45log56log67log78log89\log_3 4 \cdot \log_4 5 \cdot \log_5 6 \cdot \log_6 7 \cdot \log_7 8 \cdot \log_8 9 Applying the change of base formula to each term: (ln4ln3)(ln5ln4)(ln6ln5)(ln7ln6)(ln8ln7)(ln9ln8)\left(\frac{\ln 4}{\ln 3}\right) \cdot \left(\frac{\ln 5}{\ln 4}\right) \cdot \left(\frac{\ln 6}{\ln 5}\right) \cdot \left(\frac{\ln 7}{\ln 6}\right) \cdot \left(\frac{\ln 8}{\ln 7}\right) \cdot \left(\frac{\ln 9}{\ln 8}\right) This results in a telescoping product where intermediate terms cancel out: ln4ln3ln5ln4ln6ln5ln7ln6ln8ln7ln9ln8=ln9ln3\frac{\cancel{\ln 4}}{\cancel{\ln 3}} \cdot \frac{\cancel{\ln 5}}{\cancel{\ln 4}} \cdot \frac{\cancel{\ln 6}}{\cancel{\ln 5}} \cdot \frac{\cancel{\ln 7}}{\cancel{\ln 6}} \cdot \frac{\cancel{\ln 8}}{\cancel{\ln 7}} \cdot \frac{\ln 9}{\cancel{\ln 8}} = \frac{\ln 9}{\ln 3} Using the change of base formula in reverse or evaluating directly: ln9ln3=log39\frac{\ln 9}{\ln 3} = \log_3 9 Since 9=329 = 3^2: log39=log3(32)\log_3 9 = \log_3 (3^2) Using the logarithm property logb(bx)=x\log_b (b^x) = x: log3(32)=2\log_3 (3^2) = 2 Thus, the value of the expression is 22.