Question
Question: Evaluate: $\lim_{x\to 0} \frac{\sin(3x) - 3\sin(x)}{x^3}$...
Evaluate:
limx→0x3sin(3x)−3sin(x)

A
0
B
1
C
0.5
D
2
Answer
-4
Explanation
Solution
We can evaluate the limit using the trigonometric identity sin(3x)=3sin(x)−4sin3(x). Substituting this into the expression gives:
x3sin(3x)−3sin(x)=x3(3sin(x)−4sin3(x))−3sin(x)=x3−4sin3(x).
This can be rewritten as −4(xsin(x))3.
Applying the limit limx→0xsin(x)=1, we get:
−4(1)3=−4.
Therefore, the limit evaluates to -4.