Solveeit Logo

Question

Question: Evaluate: $ \lim_{x \to \infty} \frac{\log 4 + \log (0.5+x)}{\sqrt{x}}$...

Evaluate: limxlog4+log(0.5+x)x \lim_{x \to \infty} \frac{\log 4 + \log (0.5+x)}{\sqrt{x}}

Answer

0

Explanation

Solution

To evaluate the limit limxlog4+log(0.5+x)x\lim_{x \to \infty} \frac{\log 4 + \log (0.5+x)}{\sqrt{x}}, we follow these steps:

  1. Simplify the numerator: Using the logarithm property logA+logB=log(AB)\log A + \log B = \log (AB), we can combine the terms in the numerator: log4+log(0.5+x)=log(4(0.5+x))=log(2+4x)\log 4 + \log (0.5+x) = \log (4 \cdot (0.5+x)) = \log (2+4x) So the limit becomes: limxlog(2+4x)x\lim_{x \to \infty} \frac{\log (2+4x)}{\sqrt{x}}

  2. Check the indeterminate form: As xx \to \infty: Numerator: log(2+4x)\log (2+4x) \to \infty (since 2+4x2+4x \to \infty) Denominator: x\sqrt{x} \to \infty The limit is of the indeterminate form \frac{\infty}{\infty}, so we can apply L'Hôpital's Rule.

  3. Apply L'Hôpital's Rule (First time): Let f(x)=log(2+4x)f(x) = \log (2+4x) and g(x)=xg(x) = \sqrt{x}. Find their derivatives: f(x)=ddx(log(2+4x))=12+4xddx(2+4x)=42+4xf'(x) = \frac{d}{dx} (\log (2+4x)) = \frac{1}{2+4x} \cdot \frac{d}{dx}(2+4x) = \frac{4}{2+4x} g(x)=ddx(x)=ddx(x1/2)=12x1/2=12xg'(x) = \frac{d}{dx} (\sqrt{x}) = \frac{d}{dx} (x^{1/2}) = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}} Now, apply L'Hôpital's Rule: limxf(x)g(x)=limx42+4x12x\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \lim_{x \to \infty} \frac{\frac{4}{2+4x}}{\frac{1}{2\sqrt{x}}} =limx42+4x2x= \lim_{x \to \infty} \frac{4}{2+4x} \cdot 2\sqrt{x} =limx8x2+4x= \lim_{x \to \infty} \frac{8\sqrt{x}}{2+4x}

  4. Evaluate the new limit: The new limit is still of the form \frac{\infty}{\infty}. We can either apply L'Hôpital's Rule again or simplify by dividing the numerator and denominator by the highest power of xx in the denominator, which is xx. Dividing numerator and denominator by xx: =limx8xx2x+4xx= \lim_{x \to \infty} \frac{\frac{8\sqrt{x}}{x}}{\frac{2}{x}+\frac{4x}{x}} =limx8x2x+4= \lim_{x \to \infty} \frac{\frac{8}{\sqrt{x}}}{\frac{2}{x}+4} Now, evaluate the terms as xx \to \infty: As xx \to \infty, 8x0\frac{8}{\sqrt{x}} \to 0. As xx \to \infty, 2x0\frac{2}{x} \to 0. So the limit becomes: 00+4=04=0\frac{0}{0+4} = \frac{0}{4} = 0