Question
Mathematics Question on Limits
Evaluate limx→5 f(x), where f(x) = |x|-5
Answer
The given function is f(x) = |x|-5
limx→5− f(x) = limx→5− [|x|-5]
= limx→5(x-5) [When x>0, |x| = x]
= 5-5
= 0
limx→5+f(x) =limx→5+ [|x|-5|]
= limx→5 (x-5) [When x > 0, |x| = x]
= 5-5
= 0
It is observed that limx→5− f(x) =limx→5+f(x)
Hence,limx→5 = 5.