Solveeit Logo

Question

Mathematics Question on Limits

Evaluate limx0\lim_{x\rightarrow 0}f(x), where { |x|/x, x≠0 0, x=0

Answer

The given function is
f(x) ={ xx\frac{|x|}{x}, x≠0 0, x=0
limx0\lim_{x\rightarrow 0^-} f(x) = limx0\lim_{x\rightarrow 0^-}[xx\frac{|x|}{x}]
= limx0\lim_{x\rightarrow 0} (xx\frac{-x}{x}) [When x is negative, |x| = -x]
= limx0\lim_{x\rightarrow 0}(-1)
= -1
limx0+\lim_{x\rightarrow 0^+}f(x) = limx0+\lim_{x\rightarrow 0^+} [xx\frac{|x|}{x}]
= limx0\lim_{x\rightarrow 0} (xx\frac{x}{x}) [When x is Positive, |x| = x]
= limx0\lim_{x\rightarrow 0} (1)
= 1
It is observed that limx0\lim_{x\rightarrow 0^-} f(x)≠limx0+\lim_{x\rightarrow 0^+}f(x)
Hence, limx0\lim_{x\rightarrow 0} does not exist.