Question
Mathematics Question on Limits
Evaluate limx→0 f(x), where { ∣x∣x, x≠0 0, x=0
Answer
The given function is
f(x), where { ∣x∣x, x≠0 0, x=0
limx→0− f(x) = limx→0− [∣x∣x]
= limx→0(−xx) [When x<0, |x| = -x]
= limx→0(-1)
= -1
limx→0+f(x) = limx→0+ [∣x∣x]
= limx→0xx [When x > 0, |x| = x]
= lim x →0 (1)
= 1
It is observed that lim x →0- f(x)≠ limx→0+f(x)
Hence, limx→0 f(x) does not exist.