Solveeit Logo

Question

Mathematics Question on Limits

Evaluate limx0\lim_{x\rightarrow 0} f(x), where { xx\frac{x}{|x|}, x≠0 0, x=0

Answer

The given function is
f(x), where { xx\frac{x}{|x|}, x≠0 0, x=0
limx0\lim_{x\rightarrow 0^-} f(x) = limx0\lim_{x\rightarrow 0^-} [xx\frac{x}{|x|}]
= limx0(xx)\lim_{x\rightarrow 0}(\frac{x}{-x}) [When x<0, |x| = -x]
= limx0\lim_{x\rightarrow 0}(-1)
= -1
limx0+\lim_{x\rightarrow 0^+}f(x) = limx0+\lim_{x\rightarrow 0^+} [xx\frac{x}{|x|}]
= limx0xx\lim_{x\rightarrow 0}\frac{x}{x} [When x > 0, |x| = x]
= lim x →0 (1)
= 1
It is observed that lim x →0- f(x)≠ limx0+\lim_{x\rightarrow 0^+}f(x)
Hence, limx0\lim_{x\rightarrow 0} f(x) does not exist.