Question
Question: Evaluate \(\int_{}^{}{x^{- 11}(1 + x^{4})^{- 1/2}}dx\) where \(t = \sqrt{1 + \frac{1}{x^{4}}}\)...
Evaluate ∫x−11(1+x4)−1/2dx where t=1+x41
A
21(t5+t3+t)+c
B
−21[5t5−32t3+t]+c
C
21[4t4+32t3+t]+c
D
None of these
Answer
−21[5t5−32t3+t]+c
Explanation
Solution
Here (nm+1+P)=[4−11+1+21]=−3If we substitute then
1+x41=t2 and x5−4dx=2tdt
⇒I=∫x11(1+x4)1/2dx=∫x11.x2(1+1/x4)1/2dxI=∫x13(1+1/x4)1/2dx=41∫x8t2tdt=−21∫(t2−1)2dt=2−1∫(t4−2t2+1)dt=2−1[5t5−32t3+t]+c,
where t=1+x41