Question
Question: Evaluate \(\int_{}^{}\frac{xdx}{\sqrt{(7x - 10 - x^{2})^{3}}}\) where \(t = \frac{\sqrt{7x - 10 - x^...
Evaluate ∫(7x−10−x2)3xdx where t=x−27x−10−x2
A
9−2(t−5+2t)+c
B
92(t−5−2t)+c
C
9−1(t5+2t)+c
D
None of these
Answer
9−2(t−5+2t)+c
Explanation
Solution
In this case a<0 and c<0. Therefore neither (I) nor (II) Euler substitution is applicable. But the quadratic 7x−10−x2 has real roots α=2,β=5.
∴We use the (III) i.e.,
7x−10−x2=(x−2)(5−x)=(x−2)twhere (5−x)=(x−2)t2or 5+2t2=x(1+t2)
∴x=1+t25+2t2
⇒(x−2)t=(1+t25+2t2−2)t=1+t23t, ∴dx=(1+t2)2−6tdt
Hence, I=∫(7x−10−x2)3xdx=∫(1+t23t)3(1+t25+2t2).(1+t2)2−6tdt
=27−6∫t25+2t2dt =9−2(t25+2)dt=9−2[t−5+2t]+c
∴∫(7x−10−x2)3xdx=9−2(t−5+2t)+c, where t=x−27x−10−x2