Solveeit Logo

Question

Question: \int_{1}^{4} (|x| + |3-x|) \, dx...

\int_{1}^{4} (|x| + |3-x|) , dx

Answer

10

Explanation

Solution

The integral is split at x=3x=3: For x[1,3]x \in [1, 3], x=x|x| = x and 3x=3x|3-x| = 3-x. The integrand is x+(3x)=3x + (3-x) = 3. For x[3,4]x \in [3, 4], x=x|x| = x and 3x=(3x)=x3|3-x| = -(3-x) = x-3. The integrand is x+(x3)=2x3x + (x-3) = 2x-3.

The integral becomes: 133dx+34(2x3)dx\int_{1}^{3} 3 \, dx + \int_{3}^{4} (2x-3) \, dx =[3x]13+[x23x]34= [3x]_{1}^{3} + [x^2 - 3x]_{3}^{4} =(93)+((1612)(99))= (9 - 3) + ((16 - 12) - (9 - 9)) =6+(40)=6+4=10= 6 + (4 - 0) = 6 + 4 = 10