Question
Question: Evaluate : \(\int_{0}^{\pi}\frac{x\sin x}{1 + \cos^{2}x}\)dx...
Evaluate : ∫0π1+cos2xxsinxdx
A
2π2
B
8π2
C
4π2
D
None of these
Answer
4π2
Explanation
Solution
Let I = ∫0π1+cos2xxsinxdx … (1)
= ∫0π1+cos2(π−x)(π−x)sin(π−x) (By Prop. IV)
= ∫0π1+cos2x(π−x)sinx … (2)
Adding (1) and (2), we get
2I = p ∫0π1+cos2xsinxdx
Put cos x = t
When x = 0 Ž t = 1
x = p Ž t = –1
\ 2I = –p∫1–11+t2dt
= p∫–111+t2dt
= p tan–1 t∣−11
= p {tan–1 1 – tan–1 (–1)}
= p {2 tan–1 1}
\ I = p tan–1 1 = p . 4π
Hence I = 4π2.