Solveeit Logo

Question

Question: Evaluate : \(\int_{0}^{\pi}\frac{x\sin x}{1 + \cos^{2}x}\)dx...

Evaluate : 0πxsinx1+cos2x\int_{0}^{\pi}\frac{x\sin x}{1 + \cos^{2}x}dx

A

π22\frac{\pi^{2}}{2}

B

π28\frac{\pi^{2}}{8}

C

π24\frac{\pi^{2}}{4}

D

None of these

Answer

π24\frac{\pi^{2}}{4}

Explanation

Solution

Let I = 0πxsinx1+cos2x\int_{0}^{\pi}\frac{x\sin x}{1 + \cos^{2}x}dx … (1)

= 0π(πx)sin(πx)1+cos2(πx)\int_{0}^{\pi}\frac{(\pi - x)\sin(\pi - x)}{1 + \cos^{2}(\pi - x)} (By Prop. IV)

= 0π(πx)sinx1+cos2x\int_{0}^{\pi}\frac{(\pi - x)\sin x}{1 + \cos^{2}x} … (2)

Adding (1) and (2), we get

2I = p 0πsinx1+cos2x\int_{0}^{\pi}\frac{\sin x}{1 + \cos^{2}x}dx

Put cos x = t

When x = 0 Ž t = 1

x = p Ž t = –1

\ 2I = –p11dt1+t2\int_{1}^{–1}\frac{dt}{1 + t^{2}}

= p11dt1+t2\int_{–1}^{1}\frac{dt}{1 + t^{2}}

= p tan–1 t11\left. \ t \right|_{- 1}^{1}

= p {tan–1 1 – tan–1 (–1)}

= p {2 tan–1 1}

\ I = p tan–1 1 = p . π4\frac{\pi}{4}

Hence I = π24\frac{\pi^{2}}{4}.