Solveeit Logo

Question

Question: Evaluate : $\int_{0}^{\frac{\pi}{4}} \frac{dx}{\cos^3 x\sqrt{2 \sin 2x}}.$...

Evaluate : 0π4dxcos3x2sin2x.\int_{0}^{\frac{\pi}{4}} \frac{dx}{\cos^3 x\sqrt{2 \sin 2x}}.

Answer

1

Explanation

Solution

  1. Simplify 2sin2x=4sinxcosx=2sinxcosx\sqrt{2 \sin 2x} = \sqrt{4 \sin x \cos x} = 2\sqrt{\sin x \cos x}.
  2. Manipulate the integrand: 1cos3x2sinxcosx=sec4x2tanx\frac{1}{\cos^3 x \cdot 2\sqrt{\sin x \cos x}} = \frac{\sec^4 x}{2\sqrt{\tan x}}.
  3. Substitute u=tanxu = \tan x, so du=sec2xdxdu = \sec^2 x dx. The limits change from 0,π40, \frac{\pi}{4} to 0,10, 1.
  4. The integral becomes 1201u1/2du\frac{1}{2} \int_{0}^{1} u^{-1/2} du.
  5. Evaluate: 12[2u]01=[u]01=10=1\frac{1}{2} [2\sqrt{u}]_{0}^{1} = [\sqrt{u}]_{0}^{1} = \sqrt{1} - \sqrt{0} = 1.