Solveeit Logo

Question

Question: Evaluate: $\int_{0}^{1} \frac{log(1+x)}{1+x^2} dx$...

Evaluate: 01log(1+x)1+x2dx\int_{0}^{1} \frac{log(1+x)}{1+x^2} dx

Answer

π8log2\frac{\pi}{8} \log 2

Explanation

Solution

Let the integral be II. Using the substitution x=tanθx = \tan \theta, we get I=0π/4log(1+tanθ)dθI = \int_{0}^{\pi/4} \log(1+\tan \theta) d\theta. Applying the property 0af(x)dx=0af(ax)dx\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx, we get I=0π/4log(1+tan(π4θ))dθI = \int_{0}^{\pi/4} \log\left(1+\tan\left(\frac{\pi}{4}-\theta\right)\right) d\theta. Using the tangent subtraction formula, this simplifies to I=0π/4(log2log(1+tanθ))dθI = \int_{0}^{\pi/4} (\log 2 - \log(1+\tan \theta)) d\theta. This leads to I=π4log2II = \frac{\pi}{4} \log 2 - I. Solving for II gives I=π8log2I = \frac{\pi}{8} \log 2.