Question
Question: Evaluate: $\int_{0}^{1} \frac{log(1+x)}{1+x^2} dx$...
Evaluate: ∫011+x2log(1+x)dx

Answer
8πlog2
Explanation
Solution
Let the integral be I. Using the substitution x=tanθ, we get I=∫0π/4log(1+tanθ)dθ. Applying the property ∫0af(x)dx=∫0af(a−x)dx, we get I=∫0π/4log(1+tan(4π−θ))dθ. Using the tangent subtraction formula, this simplifies to I=∫0π/4(log2−log(1+tanθ))dθ. This leads to I=4πlog2−I. Solving for I gives I=8πlog2.