Solveeit Logo

Question

Question: Evaluate : \(\int_{- \pi/3}^{–\pi/6}\frac{dx}{1 + \tan^{2n}x}\)...

Evaluate : π/3π/6dx1+tan2nx\int_{- \pi/3}^{–\pi/6}\frac{dx}{1 + \tan^{2n}x}

A

π6\frac{\pi}{6}

B

π12\frac{\pi}{12}

C

π3\frac{\pi}{3}

D

None of these

Answer

π12\frac{\pi}{12}

Explanation

Solution

Let I = π/3π/6dx1+tan2nx\int_{- \pi/3}^{- \pi/6}\frac{dx}{1 + \tan^{2n}x}

= π/6π/3dx1+(tan(x))2n\int_{\pi/6}^{\pi/3}\frac{dx}{1 + (\tan(–x))^{2n}} (By Prop. X)

= π/6π/3cos2nxdx(sin2nx+cos2nx)\int_{\pi/6}^{\pi/3}\frac{\cos^{2n}xdx}{(\sin^{2n}x + \cos^{2n}x)} … (1) and

I = π/6π/3cos2n(π3+π6x)dxsin2n(π3+π6x)+cos2n(π3+π6x)\int_{\pi/6}^{\pi/3}\frac{\cos^{2n}\left( \frac{\pi}{3} + \frac{\pi}{6} - x \right)dx}{\sin^{2n}\left( \frac{\pi}{3} + \frac{\pi}{6} - x \right) + \cos^{2n}\left( \frac{\pi}{3} + \frac{\pi}{6} - x \right)}

(By Prop. V)

= π/6π/3sin2nxdxcos2nx+sin2nx\int_{\pi/6}^{\pi/3}\frac{\sin^{2n}xdx}{\cos^{2n}x + \sin^{2n}x} … (2)

Adding (1) & (2) we get

2I = π/6π/31\int_{\pi/6}^{\pi/3}1. dx = π3\frac{\pi}{3}π6\frac{\pi}{6} = π6\frac{\pi}{6}

\ I = π12\frac{\pi}{12}