Question
Question: Evaluate: \[\int_{ - x}^x {{{(\cos ax - \sin bx)}^{2dx}}} \] ....
Evaluate: ∫−xx(cosax−sinbx)2dx .
Solution
It is a question based on integration. Do you know what integration is? Integration is the calculation of an integral. It denotes the summation of discrete data, also you must already know that it can be said as the reverse process of differentiation. You are given a certain limit in the question, you will have to integrate the given function in that certain limit or range. Let’s do it.
Step wise solution:
Given data: To evaluate the value of ∫−xx(cosax−sinbx)2dx .
To simplify the given function.
Here, (cosax−sinbx)2 is in the form of(A−B)2whereA=cosAxandB=sinbx
We know that,
{(A - B)^2}\, = {A^2} + {B^2} - 2AB\\\
Similarly
(cosax−sinbx)2=cos2ax+sin2bx−2cosaxsinbx
To integrate the expanded form of the function
Suppose,
I=∫−xx(cosax−sinbx)2dx ⇒I=∫−xx(cos2ax+sin2bx−2cosaxsinbx)dx
Since we knew, ∫[f(x)+g(x)+h(x)]dx can be computed as
∫[f(x)+g(x)+h(x)]dx=[∫f(x)+∫g(x)+∫h(x)]dx ⇒∫[f(x)+g(x)+h(x)]dx=∫f(x)dx+∫g(x)dx+∫h(x)dx]
Now, I can be rewritten as,
I=∫−xxcos2axdx+∫−xxsin2bxdx−∫−xx2cosaxsinbxdx
Here, you can see are even functions and is an odd function, So, I is given by
I=2∫0xcos2axdx+2∫0xsin2bxdx−0
Here, we can write cos2axas2cos2ax+1 because
2{\cos ^2}ax - 1 = \,\,\cos 2ax + 1\\\
i.e.:{\cos ^2}ax\,\, = \,\dfrac{{\cos 2ax + 1}}{2}\\\
and \,\\\
\,1 - 2{\sin ^2}bx = \cos 2bx\\\
\Rightarrow - 2{\sin ^2}bx = \cos 2bx - 1\\\
\Rightarrow {\sin ^2}bx = - \left( {\dfrac{{\cos 2bx - 1}}{2}} \right)\\\
\Rightarrow {\sin ^2}bx = \dfrac{{1 - \cos 2bx}}{2}\\\
So, \,\\\
I = 2\int_0^x {\left( {\dfrac{{1 - \cos 2ax}}{2}} \right)} dx + 2\int_0^x {\left( {\dfrac{{1 - \cos 2bx}}{2}} \right)} dx\\\
\Rightarrow I = \dfrac{2}{2}\int_0^x {(1 + \cos 2ax)dx + \dfrac{2}{2}\int_0^x {(1 - \cos 2bx)dx} } \\\
\Rightarrow I = \int_0^x ( 1 + \cos 2ax)dx + \int_0^x {(1 - \cos 2bx)dx} \\\
\Rightarrow I = \int_0^x ( 1 + \cos 2ax + 1 - \cos 2bx)dx\\\
\Rightarrow I = \int_0^x ( 2 + \cos 2ax - \cos 2bx)dx\\\
Again,\\\
\Rightarrow I = \int_0^x 2 \,dx + \int_0^x {\cos 2ax} \,dx - \int_0^x {\cos 2bx} \,dx\\\
\Rightarrow I = 2\left[ x \right]_0^x + \left[ {\dfrac{{\sin 2ax}}{{2a}}} \right]_0^x - \left[ {\dfrac{{\sin 2bx}}{{2b}}} \right]_0^x\\\
\Rightarrow I = \left( {2x - 0} \right) + \left( {\dfrac{{\sin 2ax}}{{2a}} - 0} \right) - \left( {\dfrac{{\sin 2bx}}{{2b}} - 0} \right)\\\
\Rightarrow I = 2x + \dfrac{{\sin 2ax}}{{2a}} - \dfrac{{\sin 2bx}}{{2b}}\\\
Hence, ∫−xx(cosax−sinbx)2dx=2x+2asin2ax−2bsin2bx
is the required answer to be evaluated.
Note: Students often make mistakes in the formulae of integration. Try to make the functions as simple as possible before integrating them to avoid mess in integration.