Question
Question: Evaluate \[\int {x\sqrt {\dfrac{{{a^2} - {x^2}}}{{{a^2} + {x^2}}}} dx} \] A) \(\dfrac{1}{2}{a^2}{...
Evaluate ∫xa2+x2a2−x2dx
A) 21a2cos−1(a2x2)+21a4+x4+C
B) 21sin−1(a2x2)+a4+x4+C
C) 21a2sin−1(a2x2)+21a4−x4+C
D) 21cos−1(a2x2)+21a4−x4+C
Solution
Firstly, let x2=t .
⇒xdx=2dt
So, I=∫a2+ta2−t2dt.
Then, factorize the above integral.
Thus, finally on solving after factorization, we can get the correct answer.
Complete step by step solution:
Let I=∫xa2+x2a2−x2dx
Now, let x2=t
⇒2xdx=dt ⇒xdx=2dt
So,
Now, I1=21∫a4−t2tdt
Let, a4−t2=u
⇒−2tdt=du ⇒tdt=−2du
⇒I1=−41∫udu
=−4121u21 =−2u21
Putting back u=a4−t2
⇒I1=−21a4−t2
Putting values of I1=−21a4−t2 in I=2a2sin−1(a2t)−I1 , we get
⇒I=2a2sin−1(a2t)−(−21a4−t2)
Now, putting t=x2
⇒I=2a2sin−1(a2x2)+21a4−x4
So, option (C) is correct.
Note:
Some properties of indefinite integrals:
∫a2−x2dx=sin−1ax+C ∫a2+x2dx=a1tan−1ax+C ∫x2+a2dx=ln(x+x2+a2)+C ∫x2−a2dx=ln(x+x2−a2)+C ∫a2−x2dx=2a1lna−xa+x+C ∫x2−a2dx=2a1lnx+ax−a+C ∫a2−x2dx=2xa2−x2+2a2sin−1ax+C