Solveeit Logo

Question

Question: Evaluate \(\int {{{\tan }^{ - 1}}} \sqrt x dx\)....

Evaluate tan1xdx\int {{{\tan }^{ - 1}}} \sqrt x dx.

Explanation

Solution

we can start by using integration by parts. Remember, uuand vvare functions of xxwith uu'and vv'their respective derivatives with respect to xx. Then:
uvdx=uvdx(uvdx)dx\int {uvdx = u\int {vdx - \int {(u'\int {vdx} } } } )dx
Now, the important step is the selection of functions as uuand vv. For that, ILATEILATE rule can be used. IIstands for inverse trigonometric functions, LLfor logarithmic functions, AA for algebraic functions, TT for trigonometric functions, and EEfor exponential functions.
Using this rule, we can fix uu and vv. Then, using the above formula, we can integrate easily.

Complete Step by Step Solution:
Here, tan1x{\tan ^{ - 1}}\sqrt x is an inverse trigonometric function. So, it can be taken as uu. As we can see in the integration tan1xdx\int {{{\tan }^{ - 1}}} \sqrt x dx, there is no other function of xxwhich can be considered as vv.
tan1xdx\int {{{\tan }^{ - 1}}} \sqrt x dx can be written as (tan1x×1)dx\int {({{\tan }^{ - 1}}} \sqrt x \times 1)dx.
11 can be considered as function of xx. (1=x0\because 1 = {x^0})
In tan1xdx\int {{{\tan }^{ - 1}}} \sqrt x dx, u=tan1xu = {\tan ^{ - 1}}\sqrt x and v=1v = 1
Using by parts by formula,
uvdx=uvdx(uvdx)dx\int {uvdx = u\int {vdx - \int {(u'\int {vdx} } } } )dx
Let I=tan1xdxI = \int {{{\tan }^{ - 1}}} \sqrt x dx
tan1xdx=tan1x1dx[ddx(tan1x)1dx]dx.................................(\int {{{\tan }^{ - 1}}} \sqrt x dx = {\tan ^{ - 1}}\sqrt x \int {1dx} - \int {[\dfrac{d}{{dx}}} ({\tan ^{ - 1}}\sqrt x )\int {1dx]dx} .................................(equation 11)
Integration of 11is xx.
Differentiation of tan1x=11+x2{\tan ^{ - 1}}x = \dfrac{1}{{1 + {x^2}}}
Replace xxwith x\sqrt x ;
Differentiation of tan1x=11+x×12x{\tan ^{ - 1}}\sqrt x = \dfrac{1}{{1 + x}} \times \dfrac{1}{{2\sqrt x }} = (12x\dfrac{1}{{2\sqrt x }} ,due to internal differentiation of x\sqrt x )
Equation 11 will become,
I=xtan1xx1+x×12xdxI = x{\tan ^{ - 1}}\sqrt x - \int {\dfrac{x}{{1 + x}}} \times \dfrac{1}{{2\sqrt x }}dx
I=xtan1x12x1+xdx........................I = x{\tan ^{ - 1}}\sqrt x - \dfrac{1}{2}\int {\dfrac{{\sqrt x }}{{1 + x}}} dx........................(equation 22)
Let I2=x1+xdx{I_2} = \int {\dfrac{{\sqrt x }}{{1 + x}}} dx
Let x=y\sqrt x = y x=y2 \Rightarrow x = {y^2}
dx=2ydy\Rightarrow dx = 2ydy
I2=y1+y2×2ydy{I_2} = \int {\dfrac{y}{{1 + {y^2}}}} \times 2ydy
I2=2y21+y2dy{I_2} = 2\int {\dfrac{{{y^2}}}{{1 + {y^2}}}} dy
Adding and subtracting 11 in numerator and denominator,
I2=2y2+111+y2dy{I_2} = 2\int {\dfrac{{{y^2} + 1 - 1}}{{1 + {y^2}}}} dy
I2=2(111+y2)dy{I_2} = 2\int {(1 - \dfrac{1}{{1 + {y^2}}}} )dy
Substituting the value of I2{I_2}in equation 22,
I=xtan1x12I2I = x{\tan ^{ - 1}}\sqrt x - \dfrac{1}{2}{I_2}
I=xtan1x12×2(111+y2)dyI = x{\tan ^{ - 1}}\sqrt x - \dfrac{1}{2} \times 2\int {(1 - \dfrac{1}{{1 + {y^2}}}} )dy
I=xtan1x(111+y2)dyI = x{\tan ^{ - 1}}\sqrt x - \int {(1 - \dfrac{1}{{1 + {y^2}}}} )dy
I=xtan1xy+tan1yCI = x{\tan ^{ - 1}}\sqrt x - y + {\tan ^{ - 1}}y - C (11+y2dy=tan1y\because \int {\dfrac{1}{{1 + {y^2}}}} dy = {\tan ^{ - 1}}y)
Where CCis the constant of Integration, We can replace C - Cwith +c + c.
Substituting the value of yy,
I=xtan1xx+tan1x+CI = x{\tan ^{ - 1}}\sqrt x - \sqrt x + {\tan ^{ - 1}}\sqrt x + C
I=(x+1)tan1xx+CI = (x + 1){\tan ^{ - 1}}\sqrt x - \sqrt x + C

So, the integration of tan1xdx\int {{{\tan }^{ - 1}}} \sqrt x dx is (x+1)tan1xx+C(x + 1){\tan ^{ - 1}}\sqrt x - \sqrt x + C.

Note:
Always remember the important formulas of differentiation and integration. If not, then it will make any question more difficult.
Some of the important formula we have used in this question are:
1)1) 11+y2dy=tan1y\int {\dfrac{1}{{1 + {y^2}}}} dy = {\tan ^{ - 1}}y
2)2) Differentiation of tan1x=11+x2{\tan ^{ - 1}}x = \dfrac{1}{{1 + {x^2}}}
3)3) uvdx=uvdx(uvdx)dx\int {uvdx = u\int {vdx - \int {(u'\int {vdx} } } } )dx