Solveeit Logo

Question

Question: Evaluate $\int (\sqrt{25-9x^2})dx$....

Evaluate (259x2)dx\int (\sqrt{25-9x^2})dx.

Answer

x2259x2+256sin1(3x5)+C\frac{x}{2}\sqrt{25 - 9x^2} + \frac{25}{6}\sin^{-1}\left(\frac{3x}{5}\right) + C

Explanation

Solution

The integral to evaluate is (259x2)dx\int (\sqrt{25-9x^2})dx.

Explanation of the solution:

  1. Rewrite the integrand: The expression inside the square root can be written as 52(3x)25^2 - (3x)^2. So, the integral is 52(3x)2dx\int \sqrt{5^2 - (3x)^2} dx.

  2. Substitution: Let u=3xu = 3x. Differentiating both sides with respect to xx, we get du=3dxdu = 3 dx. This implies dx=13dudx = \frac{1}{3} du.

  3. Transform the integral: Substitute uu and dxdx into the integral: 52u2(13du)=1352u2du\int \sqrt{5^2 - u^2} \left(\frac{1}{3} du\right) = \frac{1}{3} \int \sqrt{5^2 - u^2} du

  4. Apply standard integral formula: The integral is now in the standard form a2x2dx\int \sqrt{a^2 - x^2} dx, where a=5a=5 and the variable is uu. The formula for this integral is: a2x2dx=x2a2x2+a22sin1(xa)+C\int \sqrt{a^2 - x^2} dx = \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2}\sin^{-1}\left(\frac{x}{a}\right) + C Applying this formula with a=5a=5 and variable uu: 13[u252u2+522sin1(u5)]+C\frac{1}{3} \left[ \frac{u}{2}\sqrt{5^2 - u^2} + \frac{5^2}{2}\sin^{-1}\left(\frac{u}{5}\right) \right] + C

  5. Substitute back: Replace uu with 3x3x: 13[3x225(3x)2+252sin1(3x5)]+C\frac{1}{3} \left[ \frac{3x}{2}\sqrt{25 - (3x)^2} + \frac{25}{2}\sin^{-1}\left(\frac{3x}{5}\right) \right] + C

  6. Simplify: 13[3x2259x2+252sin1(3x5)]+C\frac{1}{3} \left[ \frac{3x}{2}\sqrt{25 - 9x^2} + \frac{25}{2}\sin^{-1}\left(\frac{3x}{5}\right) \right] + C =3x6259x2+256sin1(3x5)+C= \frac{3x}{6}\sqrt{25 - 9x^2} + \frac{25}{6}\sin^{-1}\left(\frac{3x}{5}\right) + C =x2259x2+256sin1(3x5)+C= \frac{x}{2}\sqrt{25 - 9x^2} + \frac{25}{6}\sin^{-1}\left(\frac{3x}{5}\right) + C