Solveeit Logo

Question

Question: Evaluate \(\int {\sin x \cdot \sin 2x \cdot \sin 3xdx} \)...

Evaluate sinxsin2xsin3xdx\int {\sin x \cdot \sin 2x \cdot \sin 3xdx}

Explanation

Solution

Hint: Here as you can see the equation is in the form of sinAsinB\sin A\sin B, so we apply the formula and then simplify the integral.

Complete step-by-step answer:
As you know
sinAsinB=12(cos(AB)cos(A+B))\sin A\sin B = \dfrac{1}{2}\left( {\cos \left( {A - B} \right) - \cos \left( {A + B} \right)} \right)
Applying this, we get
12(cos(x2x)cos(x+2x))sin3xdx\Rightarrow \int {\dfrac{1}{2}\left( {\cos \left( {x - 2x} \right) - \cos \left( {x + 2x} \right)} \right)\sin 3xdx}
We know that cos(θ)=cos(θ)\cos ( - \theta ) = \cos (\theta )
12(cosxcos3x)sin3xdx\Rightarrow \int {\dfrac{1}{2}\left( {\cos x - \cos 3x} \right)\sin 3xdx}
Now break the integration
12(cosxsin3x)dx12(cos3xsin3x)dx\Rightarrow \int {\dfrac{1}{2}\left( {\cos x\sin 3x} \right)dx - \int {\dfrac{1}{2}\left( {\cos 3x\sin 3x} \right)dx} }
As you know,
cosAsinB=12(sin(B+A)+sin(BA))\cos A\sin B = \dfrac{1}{2}\left( {\sin \left( {B + A} \right) + \sin \left( {B - A} \right)} \right) , and sinAcosA=12sin2A\sin A\cos A = \dfrac{1}{2}\sin 2A
Applying this, we get
12×12(sin(3x+x)+sin(3xx))dx12×12(sin6x)dx\Rightarrow \int {\dfrac{1}{2} \times \dfrac{1}{2}\left( {\sin \left( {3x + x} \right) + \sin \left( {3x - x} \right)} \right)dx} - \int {\dfrac{1}{2} \times \dfrac{1}{2}\left( {\sin 6x} \right)dx}
Now again break the integrals
14sin4xdx+14sin2xdx14(sin6x)dx\Rightarrow \int {\dfrac{1}{4}\sin 4xdx + \int {\dfrac{1}{4}} \sin 2xdx} - \int {\dfrac{1}{4}\left( {\sin 6x} \right)dx}
Now apply integration
As we know sin(ax) integration is cos(ax)a\dfrac{{ - \cos (ax)}}{a}
14(cos4x4+cos2x2cos6x6)\Rightarrow \dfrac{1}{4}\left( {\dfrac{{ - \cos 4x}}{4} + \dfrac{{ - \cos 2x}}{2} - \dfrac{{ - \cos 6x}}{6}} \right) + C
14(cos4x4cos2x2+cos6x6)\Rightarrow \dfrac{1}{4}\left( { - \dfrac{{\cos 4x}}{4} - \dfrac{{\cos 2x}}{2} + \dfrac{{\cos 6x}}{6}} \right) + C
148(3cos4x6cos2x+2cos6x)\Rightarrow \dfrac{1}{{48}}\left( { - 3\cos 4x - 6\cos 2x + 2\cos 6x} \right) + C
So, this is your required answer.

Note: In this type of question first apply the trigonometry formula, then simplify the integration you will get your answer. It can also be solved by applying integration by parts but it will be tedious.