Solveeit Logo

Question

Question: Evaluate\(\int {{{\sin }^4}x{{\cos }^3}xdx.} \)...

Evaluatesin4xcos3xdx.\int {{{\sin }^4}x{{\cos }^3}xdx.}

Explanation

Solution

Hint: Use substitution method i.e. substitute sinx=t\sin x = t for easy simplification.

Let, I=sin4xcos3xdx=sin4xcos2xcosxdxI = \int {{{\sin }^4}x{{\cos }^3}xdx} = \int {{{\sin }^4}x{{\cos }^2}x\cos xdx}
As we knowcos2x=(1sin2x){\cos ^2}x = \left( {1 - {{\sin }^2}x} \right), so substitute this value.
I=sin4xcos3xdx=sin4x(1sin2x)cosxdx.................(1)\Rightarrow I = \int {{{\sin }^4}x{{\cos }^3}xdx} = \int {{{\sin }^4}x\left( {1 - {{\sin }^2}x} \right)\cos xdx} .................\left( 1 \right)
Now, let sinx=t\sin x = t
Differentiate above equation w.r.t.xx
As we know sinx\sin xdifferentiation is cosx\cos x
cosxdx=dt\Rightarrow \cos xdx = dt
So, substitute this value in equation (1).
I=sin4x(1sin2x)cosxdx=t4(1t2)dt I=(t4t6)dt  I = \int {{{\sin }^4}x\left( {1 - {{\sin }^2}x} \right)\cos xdx} = \int {{t^4}\left( {1 - {t^2}} \right)dt} \\\ \Rightarrow I = \int {\left( {{t^4} - {t^6}} \right)dt} \\\
Now, integrate it, as we knowtndt=[tn+1n+1]\int {{t^n}dt = \left[ {\dfrac{{{t^{n + 1}}}}{{n + 1}}} \right]} , so apply this property.
I=[t55t77]+c\Rightarrow I = \left[ {\dfrac{{{t^5}}}{5} - \dfrac{{{t^7}}}{7}} \right] + c, (where c is some arbitrary integration constant)
L.C.M of 5 and 7 is 35, and take t5{t^5}as common
I=t535[75t2]+c\Rightarrow I = \dfrac{{{t^5}}}{{35}}\left[ {7 - 5{t^2}} \right] + c
Now re-substitute the value of t=sinxt = \sin x
I=(sin5x)35[75(sin2x)]+c\Rightarrow I = \dfrac{{\left( {{{\sin }^5}x} \right)}}{{35}}\left[ {7 - 5\left( {{{\sin }^2}x} \right)} \right] + c
So, this is the required value of the integration.

Note: In such types of questions always choose substitution which makes integration simple, in above integration we choose sinx=t\sin x = t, so it makes integration simple, then we easily integrate using some basic property of integration which is stated above, then simplify we will get the required answer.