Solveeit Logo

Question

Question: Evaluate \[\int {{{\sin }^{ - 1}}\left( {\cos x} \right)} dx\] ....

Evaluate sin1(cosx)dx\int {{{\sin }^{ - 1}}\left( {\cos x} \right)} dx .

Explanation

Solution

Hint : This is a problem in which we can see composite function. To find the integration we will write the cos function in the form of sin. As we know, cosx=sin(π2x)\cos x = \sin \left( {\dfrac{\pi }{2} - x} \right) . now the integral will be of the form, sin1(sinθ){\sin ^{ - 1}}\left( {\sin \theta } \right) and we know that, sin1(sinθ)=θ{\sin ^{ - 1}}\left( {\sin \theta } \right) = \theta . So after that the integration will be found.

Complete step-by-step answer :
Given that,
sin1(cosx)dx\int {{{\sin }^{ - 1}}\left( {\cos x} \right)} dx
We can write the cos function as, cosx=sin(π2x)\cos x = \sin \left( {\dfrac{\pi }{2} - x} \right)
Now the integration function will be,
=sin1(sin(π2x))dx= \int {{{\sin }^{ - 1}}\left( {\sin \left( {\dfrac{\pi }{2} - x} \right)} \right)} dx
We know that, sin1(sinθ)=θ{\sin ^{ - 1}}\left( {\sin \theta } \right) = \theta
So we can rewrite the function as,
=(π2x)dx= \int {\left( {\dfrac{\pi }{2} - x} \right)dx}
Now we will separate the integrations,
=π2dxxdx= \int {\dfrac{\pi }{2}dx - \int {xdx} }
We know that integration of a constant is x,
=π2dxxdx= \dfrac{\pi }{2}\int {dx} - \int {xdx}
Taking the integrations,
=π2xx22+c= \dfrac{\pi }{2}x - \dfrac{{{x^2}}}{2} + c as, xndx=xn+1n+1\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}
This is the final answer.
sin1(cosx)dx=π2xx22+c\int {{{\sin }^{ - 1}}\left( {\cos x} \right)} dx = \dfrac{\pi }{2}x - \dfrac{{{x^2}}}{2} + c
So, the correct answer is “ π2xx22+c\dfrac{\pi }{2}x - \dfrac{{{x^2}}}{2} + c ”.

Note : Note that there is no need for using substitution here. That will remove cos function but the derivative of cos will not be replaced by anything. And the use of angle properties will make the problem easier. Also don’t forget to write the constant.