Solveeit Logo

Question

Mathematics Question on integral

Evaluate: sec4/3xcosec8/3xdx\int sec^{4/3} \,x cosec^{8/3}\,x \,dx

A

35tan5/3x3tan1/3x+C\frac{3}{5} tan^{-5/3} x - 3 tan^{1/3} x + C

B

35tan5/3x3tan1/3x+C- \frac{3}{5} tan^{-5/3} x - 3 tan^{1/3} x + C

C

35tan5/3x3tan1/3x+C- \frac{3}{5} tan^{-5/3} x - 3 tan^{1/3} x + C

D

None of these

Answer

35tan5/3x3tan1/3x+C- \frac{3}{5} tan^{-5/3} x - 3 tan^{1/3} x + C

Explanation

Solution

Let I=sec4/3xcosec8/3xdx I= \int sec^{4/3} x \,cosec^{8/3} x \,dx I=cos4/3xsin8/3xdx\Rightarrow I= \int cos^{-4/3} x \,sin^{-8/3} x \,dx I=sec4xtan83xdx=(1+tan2x)tan83xsec2xdx\Rightarrow I= \int \frac{sec^{4} \,x}{tan^{\frac{8}{3}} \,x}dx = \int \frac{\left(1+tan^{2} x\right)}{tan^{\frac{8}{3}} x} sec^{2} \,x\, dx Putting tanx=tsec2xdx=dttanx = t \Rightarrow sec^{2}\,x\, dx = dt I=1+t2t83dt=(t83+t23)dtI = \int \frac{1+t^{2}}{t^{\frac{8}{3}}} dt = \int \left(t^{-\frac{8}{3}} + t^{-\frac{2}{3}}\right) dt I=35t53+3t13+C\Rightarrow I=\frac{-3}{5}t^{-\frac{5}{3}} + 3t^{\frac{1}{3}} + C =35tan5/3x+3tan1/3x+C= \frac{-3}{5} tan^{-5/3} x + 3 tan^{1/3} x + C