Solveeit Logo

Question

Question: Evaluate \[\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} \] A.\[...

Evaluate π43π4dx1+cosx\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}}
A.2 - 2
B.22
C.44
D.1 - 1

Explanation

Solution

Hint : The integrand is a well-known trigonometric expression. It can be reduced to function which can easily be integrated by using standard formulas of integration. It will also require a method of substitution to evaluate the integral.

Complete step-by-step answer :
The integral which needs to be evaluated is given as
π43π4dx1+cosx\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}}
We know that
1+cosx=2cos2(x2)1 + \cos x = 2{\cos ^2}\left( {\dfrac{x}{2}} \right)
Hence, we have
π43π4dx1+cosx=π43π4dx2cos2(x2)\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{2{{\cos }^2}\left( {\dfrac{x}{2}} \right)}}}
π43π4dx1+cosx=π43π4sec2(x2)dx2\Rightarrow \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} = _{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}}\smallint \dfrac{{{{\sec }^2}\left( {\dfrac{x}{2}} \right)dx}}{2} … (i)
Let I=π43π412sec2(x2)dxI = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{1}{2}{{\sec }^2}\left( {\dfrac{x}{2}} \right)} dx
Let us put x2=m\dfrac{x}{2} = m
Differentiating both sides with respect to x, we get
ddx(x2)=dmdx\dfrac{d}{{dx}}\left( {\dfrac{x}{2}} \right) = \dfrac{{dm}}{{dx}}

12dxdx=dmdx dx2=dm  \Rightarrow \dfrac{1}{2}\dfrac{{dx}}{{dx}} = \dfrac{{dm}}{{dx}} \\\ \Rightarrow \dfrac{{dx}}{2} = dm \\\

Therefore, II becomes
I=π43π4sec2mdmI = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {{{\sec }^2}mdm}

I=[tanm]π83π8 I=tan(3π8)tan(π8)  \Rightarrow I = \left[ {{{\tan }^m}} \right]_{\dfrac{\pi }{8}}^{\dfrac{{3\pi }}{8}} \\\ \Rightarrow I = \tan \left( {\dfrac{{3\pi }}{8}} \right) - \tan \left( {\dfrac{\pi }{8}} \right) \\\

Let us evaluate the values of tan(3π8)\tan \left( {\dfrac{{3\pi }}{8}} \right) and tan(π8)\tan \left( {\dfrac{\pi }{8}} \right) tan(π8)\tan \left( {\dfrac{\pi }{8}} \right)

tan(3π4)=tan(2.3π8) tan(3π4)=2tan(3π8)1tan2(3π8) 1=2tan(3π8)1tan2(3π8) 1+tan2(3π8)=2tan(3π8)  \because \tan \left( {\dfrac{{3\pi }}{4}} \right) = \tan \left( {2.\dfrac{{3\pi }}{8}} \right) \\\ \Rightarrow \tan \left( {\dfrac{{3\pi }}{4}} \right) = \dfrac{{2\tan \left( {\dfrac{{3\pi }}{8}} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{{3\pi }}{8}} \right)}} \\\ \Rightarrow - 1 = \dfrac{{2\tan \left( {\dfrac{{3\pi }}{8}} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{{3\pi }}{8}} \right)}} \\\ \Rightarrow - 1 + {\tan ^2}\left( {\dfrac{{3\pi }}{8}} \right) = 2\tan \left( {\dfrac{{3\pi }}{8}} \right) \\\ tan2(3π8)2tan(3π8)1=0   \Rightarrow {\tan ^2}\left( {\dfrac{{3\pi }}{8}} \right) - 2\tan \left( {\dfrac{{3\pi }}{8}} \right) - 1 = 0 \\\ \\\

Above question is a quadratic equation in tan(3π8)\tan \left( {\dfrac{{3\pi }}{8}} \right)

tan(3π8)=(2)±(2)24×1×(1)2 tan(3π8)=2±4+42 tan(3π8)=2±22 tan(3π8)=1±2  \therefore \tan \left( {\dfrac{{3\pi }}{8}} \right) = \dfrac{{ - \left( { - 2} \right) \pm \sqrt {{{\left( { - 2} \right)}^2} - 4 \times 1 \times \left( { - 1} \right)} }}{2} \\\ \Rightarrow \tan \left( {\dfrac{{3\pi }}{8}} \right) = \dfrac{{2 \pm \sqrt {4 + 4} }}{2} \\\ \Rightarrow \tan \left( {\dfrac{{3\pi }}{8}} \right) = \dfrac{{2 \pm \sqrt 2 }}{2} \\\ \Rightarrow \tan \left( {\dfrac{{3\pi }}{8}} \right) = 1 \pm \sqrt 2 \\\

3π8\because \dfrac{{3\pi }}{8} lies in the first quadrant. Hence tan(3π8)\tan \left( {\dfrac{{3\pi }}{8}} \right) has to be positive.
tan(3π8)=1±2\therefore \tan \left( {\dfrac{{3\pi }}{8}} \right) = 1 \pm \sqrt 2
Again,

tan(π4)=tan(2.π8) 1=2tan(π8)1tan2(π8) 1tan2(π8)=2tan(π8) tan2(π8)+2tan(π8)1=0  \therefore \tan \left( {\dfrac{\pi }{4}} \right) = \tan \left( {2.\dfrac{\pi }{8}} \right) \\\ \Rightarrow 1 = \dfrac{{2\tan \left( {\dfrac{\pi }{8}} \right)}}{{1 - {{\tan }^2}\left( {\dfrac{\pi }{8}} \right)}} \\\ \Rightarrow 1 - {\tan ^2}\left( {\dfrac{\pi }{8}} \right) = 2\tan \left( {\dfrac{\pi }{8}} \right) \\\ \Rightarrow {\tan ^2}\left( {\dfrac{\pi }{8}} \right) + 2\tan \left( {\dfrac{\pi }{8}} \right) - 1 = 0 \\\

Again, the above equation is a quadratic equation in tan(π8)\tan \left( {\dfrac{\pi }{8}} \right)

tan(π8)=2±(2)24×1×(1)2 tan(π8)=2±82 tan(π8)=1±2  \therefore \tan \left( {\dfrac{\pi }{8}} \right) = \dfrac{{ - 2 \pm \sqrt {{{\left( 2 \right)}^2} - 4 \times 1 \times \left( { - 1} \right)} }}{2} \\\ \Rightarrow \tan \left( {\dfrac{\pi }{8}} \right) = \dfrac{{2 \pm \sqrt 8 }}{2} \\\ \Rightarrow \tan \left( {\dfrac{\pi }{8}} \right) = - 1 \pm \sqrt 2 \\\

π8\because \dfrac{\pi }{8} lies in the first quadrant. Hence tan(π8)\tan \left( {\dfrac{\pi }{8}} \right) has to be positive.
tan(π8)=1+2\therefore \tan \left( {\dfrac{\pi }{8}} \right) = - 1 + \sqrt 2
Hence,

I=tan(3π8)tan(π8) I=(1+2)(1+2) I=1+2+12 I=2  I = \tan \left( {\dfrac{{3\pi }}{8}} \right) - \tan \left( {\dfrac{\pi }{8}} \right) \\\ \Rightarrow I = \left( {1 + \sqrt 2 } \right) - \left( { - 1 + \sqrt 2 } \right) \\\ \Rightarrow I = 1 + \sqrt 2 + 1 - \sqrt 2 \\\ I = 2 \\\

Thus,
π43π4dx1+cosx=2\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} = 2
So, the correct answer is “Option B”.

Note : The students must remember all the basic formulas of trigonometric identities. They must practice to evaluate values of trigonometric functions using simple tricks. One must keep in mind the information of the quadrant in which the angles lie. This helps to identify the correct value of the function from the values obtained after calculation.