Question
Mathematics Question on Integrals of Some Particular Functions
Evaluate π/4∫3π/41+cosx1dx
A
2
B
−2
C
1/2
D
−1/2
Answer
2
Explanation
Solution
The correct answer is A:2
∫4π43π1+cosxdx
=∫4π43π(1−cosx)(1+cosx)1−cosxdx
=∫4π43π1−cos2x1−cosxdx
=∫4π43πsin2x1−cosxdx=∫4π43πsin2x1−∫4π43πsin2xcosxdx
=∫4π43πcosec2xdx−∫4π43πcotx.cosecxdx
=−cot(43π)+cosec(43π)−(cot(4π)−cosec(4π))
=2