Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

Evaluate π/43π/411+cosxdx\int\limits^{3\pi/4}_{\pi/4} \frac{1}{1+cos\,x}dx

A

22

B

2-2

C

1/21/2

D

1/2-1/2

Answer

22

Explanation

Solution

The correct answer is A:2
π43π4dx1+cosx\int^{\frac{3\pi}{4}}_{\frac{\pi}{4}}\frac{dx}{1+cosx}
=π43π41cosx(1cosx)(1+cosx)dx=\int^{\frac{3\pi}{4}}_{\frac{\pi}{4}}\frac{1-cosx}{(1-cosx)(1+cosx)}dx
=π43π41cosx1cos2xdx=\int^{\frac{3\pi}{4}}_{\frac{\pi}{4}}\frac{1-cosx}{1-cos^2x}dx
=π43π41cosxsin2xdx=π43π41sin2xπ43π4cosxsin2xdx=\int^{\frac{3\pi}{4}}_{\frac{\pi}{4}}\frac{1-cosx}{sin^2x}dx=\int^{\frac{3\pi}{4}}_{\frac{\pi}{4}}\frac{1}{sin^2x}-\int^{\frac{3\pi}{4}}_{\frac{\pi}{4}}\frac{cosx}{sin^2x}dx
=π43π4cosec2xdxπ43π4cotx.cosecxdx=\int^{\frac{3\pi}{4}}_{\frac{\pi}{4}}cosec^2xdx-\int^{\frac{3\pi}{4}}_{\frac{\pi}{4}}cotx.cosecxdx
=cot(3π4)+cosec(3π4)(cot(π4)cosec(π4))=-cot(\frac{3\pi}{4})+cosec(\frac{3\pi}{4})-(cot(\frac{\pi}{4})-cosec(\frac{\pi}{4}))
=2=2
trignometry