Solveeit Logo

Question

Question: Evaluate \[\int\limits_2^4 {\left\\{ {\left| {x - \left. 2 \right|} \right. + \left| {\left. {x - 3}...

Evaluate \int\limits_2^4 {\left\\{ {\left| {x - \left. 2 \right|} \right. + \left| {\left. {x - 3} \right| + \left| {\left. {x - 4} \right|} \right.} \right.} \right\\}} dx

Explanation

Solution

Here we use the modulus operation, we can define the modulus.
The basic definition for modulus function is f(x)=xf(x) = \left| {\left. x \right|} \right.,
Now, if xx is non-negative, then the output of ff will be xx itself.
If xx is negative then the output of ff will be the magnitude of xx, that is we can write as it x - x
In this question we have to split the terms upon their limits.
We have to find one term of splitting the given integral and similarly do this all the integral.
Finally we get the answer.

Formula used: Integration property,aaf(x)=0\int\limits_a^a {f(x)} = 0
xndx=xn+1n+1\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}}
dx=x\int {dx = x}

Complete step-by-step answer:
It is given the integration is \int\limits_2^4 {\left\\{ {\left| {x - \left. 2 \right|} \right. + \left| {\left. {x - 3} \right| + \left| {\left. {x - 4} \right|} \right.} \right.} \right\\}} dx
Now we can write to split the integrals 24x2dx+24x3dx+24x4dx....(1)\int\limits_2^4 {\left| {\left. {x - 2} \right|} \right.} dx + \int\limits_2^4 {\left| {\left. {x - 3} \right|} \right.} dx + \int\limits_2^4 {\left| {\left. {x - 4} \right|} \right.} dx....\left( 1 \right)
First we take 24x2dx....(2)\int\limits_2^4 {\left| {\left. {x - 2} \right|} \right.} dx....\left( 2 \right)
We can use the modulus definition for 24x2dx\int\limits_2^4 {\left| {\left. {x - 2} \right|} \right.} dx
f(x2)=x2\Rightarrow f(x - 2) = \left| {\left. {x - 2} \right|} \right.,
Now, if x2x - 2 is greater than or equal to 22, that is x2x - 2 nonnegative, then the output of ff will be x2x - 2 itself.
If x2x - 2 is less 22 than the output of ff will be the magnitude of x2x - 2, which can be write as (x2) - (x - 2)
The interval will be greater than or equal to 22 for that, the interval limit will be 22 to 44
The interval will for less than 22 for that, the interval limit will be 22 to 22
Then we have to split the equation (2)\left( 2 \right) limits 22(x2)dx+24(x2)dx....(3)\int\limits_2^2 { - (x - 2)} dx + \int\limits_2^4 {(x - 2)dx} ....\left( 3 \right)
Here we use, integration property for same limit aaf(x)=0\int\limits_a^a {f(x)} = 0
Now we take the first terms, 22(x2)dx=0....(4)\int\limits_2^2 { - (x - 2)} dx = 0....\left( 4 \right)
Now equation (3)\left( 3 \right) becomes 0+24(x2)dx0 + \int\limits_2^4 {(x - 2)dx}
Also we split it as, 24xdx224dx\int\limits_2^4 {xdx - 2} \int\limits_2^4 {dx}
Here we use the formula for integration,
xndx=xn+1n+1\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}}
dx=x\int {dx = x}
Now we can write it as,(x22)242(x)24\left( {\dfrac{{{x^2}}}{2}} \right)_2^4 - 2(x)_2^4
Substitute the integration limit value in xx, in the form of (upper limit - lower limit)\left( {{\text{upper limit - lower limit}}} \right)
So we can write it as, (422222)2(42) \Rightarrow \left( {\dfrac{{{4^2}}}{2} - \dfrac{{{2^2}}}{2}} \right) - 2(4 - 2)
On squaring the numerator terms and subtract the bracketed terms we get,
24(x2)dx=(16242)2(2)\int\limits_2^4 {(x - 2)dx} = \left( {\dfrac{{16}}{2} - \dfrac{4}{2}} \right) - 2(2)
Let us divided and multiply it,
(82)4\Rightarrow \left( {8 - 2} \right) - 4
On subtract the terms,
64=2...(5)\Rightarrow 6 - 4 = 2...\left( 5 \right)
\therefore Substitute (4)\left( 4 \right) and (5)\left( 5 \right) in (3)\left( 3 \right) becomes, 22(x2)dx+24(x2)dx=2\int\limits_2^2 { - (x - 2)} dx + \int\limits_2^4 {(x - 2)dx} = 2
Hence, 24x2dx=2....(a)\int\limits_2^4 {\left| {\left. {x - 2} \right|} \right.} dx = 2....\left( a \right)
Now, we take the second term in equation (1)\left( 1 \right),
24x3dx....(6)\Rightarrow \int\limits_2^4 {\left| {\left. {x - 3} \right|} \right.} dx....\left( 6 \right)
We can use the modulus definition for 24x3dx\int\limits_2^4 {\left| {\left. {x - 3} \right|} \right.} dx
f(x3)=x3\Rightarrow f(x - 3) = \left| {\left. {x - 3} \right|} \right.
Now, if x3x - 3 is greater than or equal to 33, then the output of ff will be x3x - 3 itself.
If x3x - 3 is less 33 than the output of ff will be the magnitude of x3x - 3, which can be write as - $$$$(x - 3)
The interval will for greater than or equal to 33 for that, the interval limit will be 33 to 44
The interval will for less than 33 for that, the interval limit will be 22 to 33
Now we split equation (6)\left( 6 \right) limits
23(x3)dx+34(x3)dx\int\limits_2^3 { - (x - 3)} dx + \int\limits_3^4 {(x - 3)dx}
We split the terms by using the limits we get,
23xdx+323dx+34xdx334dx- \int\limits_2^3 {xdx + 3} \int\limits_2^3 {dx} + \int\limits_3^4 {xdx - 3} \int\limits_3^4 {dx}
Here we use the formula for integration, we get
(x22)23+3(x)23+(x22)343(x)34- \left( {\dfrac{{{x^2}}}{2}} \right)_2^3 + 3(x)_2^3 + \left( {\dfrac{{{x^2}}}{2}} \right)_3^4 - 3(x)_3^4
Substitute the integration interval value in xx (upper limit - lower limit)\left( {{\text{upper limit - lower limit}}} \right)
(9242)+3(32)+(16292)3(43)- \left( {\dfrac{9}{2} - \dfrac{4}{2}} \right) + 3(3 - 2) + \left( {\dfrac{{16}}{2} - \dfrac{9}{2}} \right) - 3(4 - 3)
Here, the base is same, so we take LCM,
(942)+3(1)+(1692)3(1)- \left( {\dfrac{{9 - 4}}{2}} \right) + 3(1) + \left( {\dfrac{{16 - 9}}{2}} \right) - 3(1)
On subtract the numerator terms we get,
52+3+723- \dfrac{5}{2} + 3 + \dfrac{7}{2} - 3
Cancel the same terms ,
- \dfrac{5}{2} + 3 + \dfrac{7}{2} - 3$$$$ = 1
Hence equation (6)\left( 6 \right) becomes,
24x3dx=1....(b)\int\limits_2^4 {\left| {\left. {x - 3} \right|} \right.} dx = 1....\left( b \right)
Now, we take the third terms of the equation (1)\left( 1 \right)
24x4dx...(7)\Rightarrow \int\limits_2^4 {\left| {\left. {x - 4} \right|} \right.} dx...\left( 7 \right)
We can use the modulus definition for 24x4dx\int\limits_2^4 {\left| {\left. {x - 4} \right|} \right.} dx
f(x4)=x4\Rightarrow f(x - 4) = \left| {\left. {x - 4} \right|} \right.
Now, if x4x - 4 is greater than or equal to 44, then the output of ff will be x4x - 4 itself. If x4x - 4 is less 44 then the output of ff will be the magnitude of, which can be write as - (x4)(x - 4)
The interval will for greater than or equal to 44 for that, the interval limit will be 4 to 44
The interval will for less than 4 for that, the interval limit will be 22 to 4
Now we can split the equation (7)\left( 7 \right) by their limits we get,
24(x4)dx+44(x4)dx....(8)\int\limits_2^4 { - (x - 4)} dx + \int\limits_4^4 {(x - 4)dx} ....\left( 8 \right)
By integration property aaf(x)=0\int\limits_a^a {f(x)} = 0
Then, \int\limits_4^4 {(x - 4)dx} $$$$ = 0
Now we take the first terms of the equation \left( 8 \right) $$$\int\limits_2^4 { - (x - 4)} dx$$ $$ + 0$$ We split the terms by using the limits $$ - \int\limits_2^4 {xdx + } 4\int\limits_2^4 {dx} $$ Here we use the formula for integration, we get $$ - \left( {\dfrac{{{x^2}}}{2}} \right)_2^4 + 4(x)_2^4$$ Substitute the integration interval value in $$x$$ $$\left( {{\text{upper limit - lower limit}}} \right)$$ $$ - \left( {\dfrac{{16}}{2} - \dfrac{4}{2}} \right) + 4(4 - 2)$$ Let us divided the numerator terms and subtract the bracket term we get, $$ - (8 - 2) + 4(2)$$ On subtracting, $$ - (6) + 8$$$$ = 2$$ Hence equation \left( 8 \right)becomes, $$\int\limits_2^4 {\left| {\left. {x - 4} \right|} \right.} dx = 2....\left( c \right)$$ \therefore EquationEquation\left( 1 \right), becomes $$ \Rightarrow \int\limits_2^4 {\left| {\left. {x - 2} \right|} \right.} dx + \int\limits_2^4 {\left| {\left. {x - 3} \right|} \right.} dx + \int\limits_2^4 {\left| {\left. {x - 4} \right|} \right.} dx$$ Substitute \left( a \right) \left( b \right)andand\left( c \right)inequationin equation\left( 1 \right)$ we get,
2 + 1 + 2$$$$ = 5
Hence
\int\limits_2^4 {\left| {\left. {x - 2} \right|} \right.} dx + \int\limits_2^4 {\left| {\left. {x - 3} \right|} \right.} dx + \int\limits_2^4 {\left| {\left. {x - 4} \right|} \right.} dx$$$$ = 5

Note: Here, the derivation of the sum is little big, but the concept is small.
If the integrative involves the limits in interval x=0x = 0, then the integration does not exist.
By the definition of modulus function, a modulus function is a function which gives us the magnitude of that number.