Question
Question: Evaluate:\[\int\limits_0^\pi {\left( {{{\sin }^2}\left( {\dfrac{x}{2}} \right) - {{\cos }^2}\left( {...
Evaluate:0∫π(sin2(2x)−cos2(2x))dx
Solution
The process of calculating the integrals is known as integration. Definite and indefinite integrals are the two types of integrals. Definite integrals will have limits whereas indefinite integrals don’t have limits. The given sum is a definite integral since we have the limit 0−π. First, we will try to simplify the given function using trigonometry identities and we will integrate it using the integral formula then, we will apply the limit points.
Formula used: Some of the formulas that we will be using in this problem are:
xndx=nxn−1
sin2θ=21−cos(2θ)
cos2θ=21+cos(2θ)
∫cdu=c∫du
∫cdu=cu
∫cos(x)dx=sin(x)
∫cos(2x)dx=2sin(2x)
Complete step by step answer:
It is given that0∫π(sin2(2x)−cos2(2x))dx. Let us split this function as ∫Adx−∫Bdx=0∫πsin22xdx−0∫πcos22xdx
Let us consider ∫Adx=∫sin2(2x)dx
Letu=2x, on differentiating this we getdu=2dx⇒2du=dx. On substituting this we get,
∫Adx=∫sin2(u)2du
Using the formula, ∫cdu=c∫duwe get
=2∫sin2(u)du
We know thatsin2θ=21−cos(2θ). Using this we get
=2∫21−cos(2u)du
Again, by using the formula ∫cdu=c∫duwe get
=∫1−cos(2u)du
Let us split this function into two.
∫1−cos(2u)du=∫1du−∫cos(2u)du
Using the formula, ∫cdu=cuwe get
=u−∫cos(2u)du
Let us substitutev=2u. On differentiating this we getdv=2du⇒du=2dv.
u−∫cos(2u)du=u−∫2cos(v)dv
Again, using the formula∫cdu=c∫du we get
=u−21∫cos(v)dv
Now integrating this by using the formula, ∫cos(x)dx=sin(x)we get
=u−21(sin(v))
Let’s re-substitute v=2uwe get
=u−2sin(2u)
Now re-substitute u=2xwe get
Thus,∫Adx=2x−2sin(x)
Now let us consider, ∫Bdx=∫cos2(2x)dx
Let us substituteu=2x. On differentiating this we getdu=2dx⇒2du=dx.
∫cos2(2x)dx=∫cos2(u)2du
Using the formula, ∫cdu=c∫duwe get
=2∫cos2(u)du
Now using the formula, cos2θ=21+cos(2θ)we get
=2∫21+cos(2u)du
Again, using the formula∫cdu=c∫du we get
=∫1+cos(2u)du
Let us split this function into two.
∫1+cos(2u)du=∫1du+∫cos(2u)du
Using the formula, ∫cdu=cuwe get
=u+∫cos(2u)du
On integrating this by using the formula,∫cos(2x)dx=2sin(2x) we get
=u+2sin(2u)
Now let us re-substitute u=2xwe get
Thus, ∫Bdx=2x+2sin(x)
Therefore, ∫Adx−∫Bdx=2x−2sin(x)−2x−2sin(x)
On simplifying this we get,
∫Adx−∫Bdx=−sin(x)
Now let us apply the limits,
0∫πsin2(2x)−cos2(2x)dx=−[sin(x)]0π
=−[sin(π)−sin(0)]
We know that sin(π)=0&sin(0)=0
Thus, we get 0∫πsin2(2x)−cos2(2x)dx=0
Note: Whenever we use the substitution method in differentiation or integration, we have to re-substitute it so that we will get our solution in the given variables. Otherwise, we will get the answers in temporary variables. While applying the limit we have to first apply the upper limit then the lower limit. The difference between them gives us the value of the integrated function.