Solveeit Logo

Question

Question: Evaluate: \[\int\limits_0^\pi {{e^{\left| {\cos x} \right|}}(2\sin (\dfrac{1}{2}\cos x) + 3\cos (\df...

Evaluate: 0πecosx(2sin(12cosx)+3cos(12cosx))sinxdx\int\limits_0^\pi {{e^{\left| {\cos x} \right|}}(2\sin (\dfrac{1}{2}\cos x) + 3\cos (\dfrac{1}{2}\cos x))\sin xdx}

Explanation

Solution

We will apply integration to both the terms. We will write it separately for both the terms. Then, we will assume cosx\cos \,x as t. Then, we will write the limit in terms of t. And then we will integrate. Then, we will get the answer.

Complete step by step solution:
Given,
0πecosx(2sin(12cosx)+3cos(12cosx))sinxdx\int\limits_0^\pi {{e^{\left| {\cos x} \right|}}(2\sin (\dfrac{1}{2}\cos x) + 3\cos (\dfrac{1}{2}\cos x))\sin xdx}
We can also write it as
0πecosx(2sin(12cosx)+3cos(12cosx))sinxdx=0πecosx(2sin(12cosx))sinxdx+0π3cos(12cosx)sinxdx\int\limits_0^\pi {{e^{\left| {\cos x} \right|}}(2\sin (\dfrac{1}{2}\cos x) + 3\cos (\dfrac{1}{2}\cos x))\sin xdx} = \int\limits_0^\pi {{e^{\left| {\cos x} \right|}}(2\sin (\dfrac{1}{2}\cos x))\sin xdx + \int\limits_0^\pi {3\cos (\dfrac{1}{2}\cos x)\sin xdx} } …. (1)
Here we will use the following formula

2\int\limits_0^a {f(x)dx} ,f(2a - x) = 2a \\\ 0, f(2a - x) = - f(x) } \right\\}} $$ Using this formula, the first term in equation (1) will become zero. $$ \Rightarrow \int\limits_0^\pi {{e^{\left| {\cos x} \right|}}(2\sin (\dfrac{1}{2}\cos x))\sin xdx = 0} $$ Therefore, we have $$ \Rightarrow \int\limits_0^\pi {{e^{\left| {\cos x} \right|}}(2\sin (\dfrac{1}{2}\cos x) + 3\cos (\dfrac{1}{2}\cos x))\sin xdx = } \int\limits_0^\pi {{e^{\cos x}}3\cos (\dfrac{1}{2}\cos x))\sin xdx} $$ This can also be written as $$ = 2\int\limits_0^{\dfrac{\pi }{2}} {{e^{\cos x}}3\cos (\dfrac{1}{2}\cos x))\sin xdx} $$ …. (2) Let $$\cos x = t$$ $$ \Rightarrow - \sin xdx = dt$$ At $$x = 0,t = 1$$ And at $$x = \dfrac{\pi }{2},t = 0$$ Putting these values in equation (2), we have $$ = 2\int\limits_0^1 {{e^t}3\cos (\dfrac{1}{2}t))dt} $$ Taking 3 outside the integration $$ = 6\int\limits_0^1 {{e^t}\cos (\dfrac{1}{2}t))dt} $$ Here we will use the formula $$\int {{e^{ax}}\cos bxdx = \dfrac{{{e^{ax}}}}{{{a^2} + {b^2}}}(b\sin bx + a\cos bx)} $$ On integrating, we $$ = 6\left[ {\dfrac{{{e^t}}}{{1 + \dfrac{1}{4}}}\left( {\dfrac{1}{2}\sin \dfrac{x}{2} + \cos \dfrac{x}{2}} \right)} \right]_0^1$$ Putting the values of limit $$ = \dfrac{{24}}{5}\left[ {e\left( {\dfrac{1}{2}\sin \dfrac{1}{2} + \cos \dfrac{1}{2}} \right) - {e^0}\left( {\cos 0} \right)} \right]$$ Since the value of $$\cos 0$$ is 1 and the value of $${e^0}$$ is 1. Therefore, we have $$ = \dfrac{{24}}{5}\left[ {\dfrac{e}{2}\sin \dfrac{1}{2} + e\cos \dfrac{1}{2} - 1} \right]$$ **Hence, the value of $$\int\limits_0^\pi {{e^{\left| {\cos x} \right|}}(2\sin (\dfrac{1}{2}\cos x) + 3\cos (\dfrac{1}{2}\cos x))\sin xdx} = \dfrac{{24}}{5}\left[ {\dfrac{e}{2}\sin \dfrac{1}{2} + e\cos \dfrac{1}{2} - 1} \right]$$.** **Note:** Definite integrals are the integrals which have upper and lower limits. Here, we have used the properties of definite integrals. We know that,
\\\  

\int\limits_0^{2a} {f(x)dx = } \int\limits_0^a {f(x)dx + } \int\limits_0^a {f(2a - x)dx} \\

If $$f(2a - x) = f(x)$$. Then, $$\int\limits_0^{2a} {f(x)dx = } \int\limits_0^a {f(x)dx + } \int\limits_0^a {f(x)dx} = 2\int\limits_0^a {f(x)dx} $$ If $$f(2a - x) = - f(x)$$. Then, $$\int\limits_0^{2a} {f(x)dx = } \int\limits_0^a {f(x)dx - } \int\limits_0^a {f(x)dx} = 0$$ $$ \Rightarrow \int\limits_0^{2a} {f(x)dx = \left\\{ { 2\int\limits_0^a {f(x)dx} ,f(2a - x) = 2a \\\ 0,f(2a - x) = - f(x) } \right\\}} $$