Question
Question: Evaluate: \[\int\limits_0^\pi {{e^{\left| {\cos x} \right|}}(2\sin (\dfrac{1}{2}\cos x) + 3\cos (\df...
Evaluate: 0∫πe∣cosx∣(2sin(21cosx)+3cos(21cosx))sinxdx
Explanation
Solution
We will apply integration to both the terms. We will write it separately for both the terms. Then, we will assume cosx as t. Then, we will write the limit in terms of t. And then we will integrate. Then, we will get the answer.
Complete step by step solution:
Given,
0∫πe∣cosx∣(2sin(21cosx)+3cos(21cosx))sinxdx
We can also write it as
0∫πe∣cosx∣(2sin(21cosx)+3cos(21cosx))sinxdx=0∫πe∣cosx∣(2sin(21cosx))sinxdx+0∫π3cos(21cosx)sinxdx …. (1)
Here we will use the following formula
\\\
\int\limits_0^{2a} {f(x)dx = } \int\limits_0^a {f(x)dx + } \int\limits_0^a {f(2a - x)dx} \\
If $$f(2a - x) = f(x)$$. Then, $$\int\limits_0^{2a} {f(x)dx = } \int\limits_0^a {f(x)dx + } \int\limits_0^a {f(x)dx} = 2\int\limits_0^a {f(x)dx} $$ If $$f(2a - x) = - f(x)$$. Then, $$\int\limits_0^{2a} {f(x)dx = } \int\limits_0^a {f(x)dx - } \int\limits_0^a {f(x)dx} = 0$$ $$ \Rightarrow \int\limits_0^{2a} {f(x)dx = \left\\{ { 2\int\limits_0^a {f(x)dx} ,f(2a - x) = 2a \\\ 0,f(2a - x) = - f(x) } \right\\}} $$