Solveeit Logo

Question

Mathematics Question on integral

Evaluate : 0π/2cosx(cosx2+sinx2)3dx \int\limits_{0}^{\pi/2}\frac{ cos \,x}{\left(cos \frac{x}{2} +sin \frac{x}{2}\right)^{3}} dx

A

222 -\sqrt{2}

B

2+22 +\sqrt{2}

C

3+33 +\sqrt{3}

D

333 -\sqrt{3}

Answer

222 -\sqrt{2}

Explanation

Solution

We have, I=0π/2cosx(cosx2+sinx2)3dxI = \int\limits_{0}^{\pi/2}\frac{ cos \,x}{\left(cos \frac{x}{2} +sin \frac{x}{2}\right)^{3}} dx =0π/2cos2x2sin2x2(cosx2+sinx2)3dx=0π/2cosx2sinx2(cosx2+sinx2)2dx= \int\limits_{0}^{\pi /2} \frac{cos^{2 } \frac{x}{2} - sin^{2} \frac{x}{2} }{\left(cos \frac{x}{2} + sin \frac{x}{2}\right)^{3}} dx = \int\limits_{0}^{\pi /2} \frac{cos^{ } \frac{x}{2} - sin \frac{x}{2} }{\left(cos \frac{x}{2} + sin \frac{x}{2}\right)^{2}} dx Let cosx2+sinx2=tcos \frac{x}{2} +sin \frac{x}{2} = t 12(sinx2+cosx2)dx=dt\Rightarrow \frac{1}{2}\left(-sin \frac{x}{2} +cos \frac{x}{2}\right) dx = dt Also, x=0t=1x = 0 \Rightarrow t = 1\, and x=π2t=2\, x = \frac{\pi}{2} \Rightarrow t = \sqrt{2} I=022dtt22[1t]12\therefore I = \int\limits_{0}^{\sqrt{2}} \frac{2dt}{t^{2}} 2\left[-\frac{1}{t}\right]_{1}^{\sqrt{2}} =2[12+1]=(22)= 2\left[-\frac{1}{\sqrt{2}} +1\right] = \left(2-\sqrt{2}\right)