Solveeit Logo

Question

Mathematics Question on integral

Evaluate: 0π41sin2xdx\int\limits_{0}^{\frac{\pi}{4 }} \sqrt{1-sin\, 2x} \,\,\, dx

A

21\sqrt{2}-1

B

2+1\sqrt{2}+1

C

2\sqrt{2}

D

None of these

Answer

21\sqrt{2}-1

Explanation

Solution

We have, I=0π41sin2xdxI= \int\limits_{0}^{\frac{\pi}{4}}\sqrt{1-sin\, 2x } \,dx =0π4sin2x+cos2x2sinxcosxdx= \int\limits_{0}^{\frac{\pi }{4}}\sqrt{sin ^{2}\,x +cos^{2}\,x -2\,sin \,x \,cos\, x }\,dx =0π4(cosxsinx)2=0π4(cosxsinx)dx=\int\limits_{0}^{\frac{\pi }{4}}\sqrt{\left(cos\,x -sin\,x\right)^{2}}= \int_{0}^{\frac{\pi }{4}}\left|\left(cos\,x-sin\, x\right)\right| dx =0π/4(cosxsinx)dx[0<x<π/4,cosx>sinx]= \int\limits_{0}^{\pi/4}\left(cos\, x-sin\,x\right)dx \left[\because 0 < x < \pi/4, cos\,x > sin\,x \right] =[sinx+cosx]0π/4=221=21 = \left[sin\,x +cos \,x\right]_{0}^{\pi/4} = \frac{2}{\sqrt{2}} -1= \sqrt{2}-1