Solveeit Logo

Question

Question: Evaluate: \[\int\limits_0^{\dfrac{\pi }{4}} {\log \left( {1 + \tan x} \right)} dx\]?...

Evaluate: 0π4log(1+tanx)dx\int\limits_0^{\dfrac{\pi }{4}} {\log \left( {1 + \tan x} \right)} dx?

Explanation

Solution

The given integral is a definite integral so, we will get a unique value for this integral. We will first let the given integral be equal to II. Further, we will use the properties of definite integrals to simplify the question. Then we will use the difference formula for tangent function. At last, we will use the logarithmic property.

Formula used:
0af(x)dx=0af(ax)dx\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx
tan(ab)=tanatanb1+tanatanb\Rightarrow \tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}

Complete step by step answer:
I=0π4log(1+tanx)dxI = \int\limits_0^{\dfrac{\pi }{4}} {\log \left( {1 + \tan x} \right)} dx
Now using the property of definite integral that 0af(x)dx=0af(ax)dx\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx, we get;
I=0π4log[1+tan(π4x)]dx\Rightarrow I = \int\limits_0^{\dfrac{\pi }{4}} {\log \left[ {1 + \tan \left( {\dfrac{\pi }{4} - x} \right)} \right]} dx

Now we will use the difference formula form tangent function i.e., tan(ab)=tanatanb1+tanatanb\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}, we get,
I=0π4log[1+tanπ4tanx1+tanπ4tanx]dx\Rightarrow I = \int\limits_0^{\dfrac{\pi }{4}} {\log \left[ {1 + \dfrac{{\tan \dfrac{\pi }{4} - \tan x}}{{1 + \tan \dfrac{\pi }{4}\tan x}}} \right]} dx
Now we will put the value of tanπ4\tan \dfrac{\pi }{4}. So, we have;
I=0π4log[1+1tanx1+tanx]dx\Rightarrow I = \int\limits_0^{\dfrac{\pi }{4}} {\log \left[ {1 + \dfrac{{1 - \tan x}}{{1 + \tan x}}} \right]} dx
Now we will take the LCM and solve it. So, we get;
I=0π4log[1+tanx+1tanx1+tanx]dx\Rightarrow I = \int\limits_0^{\dfrac{\pi }{4}} {\log \left[ {\dfrac{{1 + \tan x + 1 - \tan x}}{{1 + \tan x}}} \right]} dx

Cancelling the terms, we get;
I=0π4log[21+tanx]dx\Rightarrow I = \int\limits_0^{\dfrac{\pi }{4}} {\log \left[ {\dfrac{2}{{1 + \tan x}}} \right]} dx
Now by using the property of logarithm that;
logab=logalogb\log \dfrac{a}{b} = \log a - \log b
We get;
I=0π4log2dx0π4log(1+tanx)dx\Rightarrow I = \int\limits_0^{\dfrac{\pi }{4}} {\log 2} dx - \int\limits_0^{\dfrac{\pi }{4}} {\log \left( {1 + \tan x} \right)} dx
Now we can see that the second term on the RHS is the same expression we have assumed to be equal to II. So, replacing we get;
I=0π4log2dxI\Rightarrow I = \int\limits_0^{\dfrac{\pi }{4}} {\log 2} dx - I

Now shifting II, to the LHS we get
2I=0π4log2dx\Rightarrow 2I = \int\limits_0^{\dfrac{\pi }{4}} {\log 2} dx
Taking the logarithmic term out of integration as it is a constant, we get;
2I=log20π4dx\Rightarrow 2I = \log 2\int\limits_0^{\dfrac{\pi }{4}} {dx}
After integration we get;
2I=log2[x]0π4\Rightarrow 2I = \log 2\left[ x \right]_0^{\dfrac{\pi }{4}}
Putting the limits, we get;
2I=log2(π40)\Rightarrow 2I = \log 2\left( {\dfrac{\pi }{4} - 0} \right)
On solving we get;
I=π8log2\therefore I = \dfrac{\pi }{8}\log 2

Therefore, the integration of 0π4log(1+tanx)dx\int\limits_0^{\dfrac{\pi }{4}} {\log \left( {1 + \tan x} \right)} dx is π8log2\dfrac{\pi }{8}\log 2.

Note: One thing to note is that the value we have got for this integral is the area under the curve log(1+tanx)\log \left( {1 + \tan x} \right) from x=0x = 0 to x=π4x = \dfrac{\pi }{4}. We can also solve this question by drawing the curve and finding the area for the given limit. But as it is somewhat difficult to draw the curve for the given expression, we have simply found the value by integration. But, in some other cases where drawing a graph will be easier, we can check by finding the area.