Solveeit Logo

Question

Question: Evaluate \( \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{\sin x + \cos x}}{{16 + 9\sin 2x}}dx} \)...

Evaluate 0π4sinx+cosx16+9sin2xdx\int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{\sin x + \cos x}}{{16 + 9\sin 2x}}dx}

Explanation

Solution

Hint : In order to determine the answer of above definite integral use the method of Integration by substitution by substituting sinxcosx\sin x - \cos x with tt . With the use of this assumption, rewrite the whole integral in terms of tt along with the limits. Use the standard formula of integration 1a2(bx)2=12abloga+bxabx\int {\dfrac{1}{{{a^2} - {{\left( {bx} \right)}^2}}} = \dfrac{1}{{2ab}}} \log \left| {\dfrac{{a + bx}}{{a - bx}}} \right| to evaluate the integral and then put the limits as [Upper limit – lower limit] to obtain the final answer.
Formula:
xndx=xn+1n+1+C\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C}

Complete step-by-step answer :
We are Given integral 0π4sinx+cosx16+9sin2xdx\int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{\sin x + \cos x}}{{16 + 9\sin 2x}}dx} -(1)
Here we are using Integration by substitution method to solve the above integral
Now, let’s assume sinxcosx=t\sin x - \cos x = t -(2)
Calculating the first derivative of the above assumed equation we get,
(cosx+sinx)dx=dt\left( {\cos x + \sin x} \right)dx = dt
As per the assumption, we have
(sinxcosx)2=t2{\left( {\sin x - \cos x} \right)^2} = {t^2}
With the help of identity (AB)2=A2+B2+2AB{\left( {A - B} \right)^2} = {A^2} + {B^2} + 2AB and trigonometric identity 2sinxcosx=sin2x2\sin x\cos x = \sin 2x ,we can rewrite the expression as
sin2x=1t2\sin 2x = 1 - {t^2}
Since we have assumed some xx expression in terms of tt , so the limits of integrations will also change accordingly. So
x=0,t=1x = 0,t = - 1 as sin(0)cos(1)=tt=1\sin \left( 0 \right) - \cos \left( { - 1} \right) = t \Rightarrow t = - 1
Similarly
x=π4,t=0x = \dfrac{\pi }{4},t = 0 as sin(π4)cos(π4)=tt=0\sin \left( {\dfrac{\pi }{4}} \right) - \cos \left( {\dfrac{\pi }{4}} \right) = t \Rightarrow t = 0
Now with the help of assumptions and results obtained above and along with the proper limits we can rewrite our original integral expression as
I=0π4sinx+cosx16+9sin2xdx I=10116+9(1t2)dt  \therefore I = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{\sin x + \cos x}}{{16 + 9\sin 2x}}dx} \\\ I = \int\limits_{ - 1}^0 {\dfrac{1}{{16 + 9\left( {1 - {t^2}} \right)}}dt} \\\
Simplifying further ,
I=101259t2dtI = \int\limits_{ - 1}^0 {\dfrac{1}{{25 - 9{t^2}}}dt}
Rewriting the above integral , we get
I=101(5)2(3t)2dtI = \int\limits_{ - 1}^0 {\dfrac{1}{{{{\left( 5 \right)}^2} - {{\left( {3t} \right)}^2}}}dt}
Now using the rule of integration 1a2(bx)2=12abloga+bxabx\int {\dfrac{1}{{{a^2} - {{\left( {bx} \right)}^2}}} = \dfrac{1}{{2ab}}} \log \left| {\dfrac{{a + bx}}{{a - bx}}} \right| , we obtain the integration as
I=[130log5+3t53t]10I = \left[ {\dfrac{1}{{30}}\log \left| {\dfrac{{5 + 3t}}{{5 - 3t}}} \right|} \right]_{ - 1}^0
Assigning limits to the above integral
Limits are calculated as [Upper limit – lower limit]
I=130[log5+3(0)53(0)log5+3(1)53(1)] =130[log55log535+3] =130[log1log28]  I = \dfrac{1}{{30}}\left[ {\log \left| {\dfrac{{5 + 3\left( 0 \right)}}{{5 - 3\left( 0 \right)}}} \right| - \log \left| {\dfrac{{5 + 3\left( { - 1} \right)}}{{5 - 3\left( { - 1} \right)}}} \right|} \right] \\\ = \dfrac{1}{{30}}\left[ {\log \left| {\dfrac{5}{5}} \right| - \log \left| {\dfrac{{5 - 3}}{{5 + 3}}} \right|} \right] \\\ = \dfrac{1}{{30}}\left[ {\log \left| 1 \right| - \log \left| {\dfrac{2}{8}} \right|} \right] \\\
As we know the value for log(1)=0\log \left( 1 \right) = 0
=130[0log14] =130log14   = \dfrac{1}{{30}}\left[ {0 - \log \left| {\dfrac{1}{4}} \right|} \right] \\\ = - \dfrac{1}{{30}}\log \dfrac{1}{4} \;
I=130log14\therefore I = - \dfrac{1}{{30}}\log \dfrac{1}{4}
Therefore, the value of the given integral 0π4sinx+cosx16+9sin2xdx\int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{\sin x + \cos x}}{{16 + 9\sin 2x}}dx} is equal to 130log14- \dfrac{1}{{30}}\log \dfrac{1}{4}
So, the correct answer is “ 130log14- \dfrac{1}{{30}}\log \dfrac{1}{4} ”.

Note : 1.Different types of methods of Integration:
I.Integration by Substitution
II.Integration by parts
III.Integration of rational algebraic function by using partial fraction
2. Integration by Substitution: The method of evaluating the integral by reducing it to standard form by a proper substitution is called integration by substitution.
If φ(x)\varphi (x) is a continuously differentiable function, then to evaluate integrals of the form.
f(φ(x))φ1(x)dx\int {f(\varphi (x))\,{\varphi ^1}(x)dx} , we substitute φ(x)\varphi (x) =t and φ1(x)dx=dt{\varphi ^1}(x)dx = dt
This substitution reduces the above integral to f(t)dt\int {f(t)\,dt} . After evaluating this integral we substitute back the value of t.