Solveeit Logo

Question

Question: Evaluate \( \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} \)...

Evaluate 0π2logsinxdx\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx}

Explanation

Solution

Hint : As we can see that in the above question we have given the upper limit and the lower limit and then we have to integrate that. We can solve the above question with the help of logarithm formulas and the trigonometric identities. We know the basic trigonometric identity i.e. sin2x=2sinxcosx\sin 2x = 2\sin x\cos x . In the logarithm if we have loga+logb\log a + \log b , we can write it as logab\log ab .

Complete step-by-step answer :
Here we have 0π2logsinxdx\int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} . Let us assume
I=0π2logsinxdxI = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} . It is equation (1)(1) .
We can write the above as
I=0π2logsin(π2x)dxI = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin \left( {\dfrac{\pi }{2} - x} \right)dx} , as we know that sin(90θ)=cosθ\sin (90 - \theta ) = \cos \theta .
We have written here π2x\dfrac{\pi }{2} - x which means 1802x=90x\dfrac{{180}}{2} - x = 90 - x .
So by applying this we can write I=0π2logcosxdxI = \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} , this is equation (2)(2) . We will add the equations one and two, so we have:
I+I=0π2logsinxdx+0π2logcosxdxI + I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} + \int\limits_0^{\dfrac{\pi }{2}} {\log \cos xdx} .
On further solving we have:
2I=0π2logsinxdx+logcosxdx2I = \int\limits_0^{\dfrac{\pi }{2}} {\log \sin xdx} + \log \cos xdx . By applying the above logarithm formula we can write : 2I=0π2log(sinxcosx)dx2I = \int\limits_0^{\dfrac{\pi }{2}} {\log (\sin x} \cos x)dx. By multiplying and dividing the numerator and denominator by 22 we have 0π2log(2sinxcosx2)dx\int\limits_0^{\dfrac{\pi }{2}} {\log (\dfrac{{2\sin x\cos x}}{2}} )dx.
Again with the above trigonometric identity we can write it as 0π2log(sin2x2)dx\int\limits_0^{\dfrac{\pi }{2}} {\log (\dfrac{{\sin 2x}}{2}} )dx.
We can write it as 0π2log(sin2x)dx0π2log(2)dx\int\limits_0^{\dfrac{\pi }{2}} {\log (\sin 2x} )dx - \int\limits_0^{\dfrac{\pi }{2}} {\log (2} )dx. Now let us assume 2x=t2x = t .
Let us separate the left hand side 2I2I as I1,I2{I_1},{I_2} . So we can write
I2=0π2log(sin2x)dx{I_2} = \int\limits_0^{\dfrac{\pi }{2}} {\log (\sin 2x} )dx.
Now we solve this. If we have 2x=t2x = t , after differentiating this with respect to xx we have 2=dtdxdx=dt22 = \dfrac{{dt}}{{dx}} \Rightarrow dx = \dfrac{{dt}}{2} .
Now by putting the values of t and dt and changing the limits. We have
I2=0π2log(sint)dt2120πlog(sint)dt{I_2} = \int\limits_0^{\dfrac{\pi }{2}} {\log (\sin t} )\dfrac{{dt}}{2} \Rightarrow \dfrac{1}{2}\int\limits_0^\pi {\log (\sin t} )dt.
We will use the property which says that
02af(x)dx=20af(x)dx,iff(2ax)=f(x)\int\limits_0^{2a} {f(x)dx = 2\int\limits_0^a {f(x)dx,\,if\,f(2a - x) = f(x)} } .
On comparing from the formula we have a=πa = \pi . So here we have f(t)=logsintf(t) = \log \sin t , by putting the value f(2at)=f(2πt)=logsin(2πt)=logsintf(2a - t) = f(2\pi - t) = \log \sin (2\pi - t) = \log \sin t
We can write the above as 120πlog(sint)dt=12×20π2log(sint)dt\dfrac{1}{2}\int\limits_0^\pi {\log (\sin t} )dt = \dfrac{1}{2} \times 2\int\limits_0^{\dfrac{\pi }{2}} {\log (\sin t} )dt. It gives us the value I2=0π2log(sint)dt{I_2} = \int\limits_0^{\dfrac{\pi }{2}} {\log (\sin t} )dt. We will use another property now i.e. abf(x)dx=abf(t)dt\int\limits_a^b {f(x)dx = \int\limits_a^b {f(t)dt} } .
We will put the value of I2{I_2} back in the equation we have 2I=0π2log(sin2x)dx0π2log(2(dx)2I = \int\limits_0^{\dfrac{\pi }{2}} {\log (\sin 2x} )dx - \int\limits_0^{\dfrac{\pi }{2}} {\log (2\left( {dx} \right)} .
On further solving we have 2I=0π2log(sinx)dxlog(2)0π21.dxI1log(2)(x)0π22I = \int\limits_0^{\dfrac{\pi }{2}} {\log (\sin x} )dx - \log (2)\int\limits_0^{\dfrac{\pi }{2}} {1.dx} \Rightarrow {I_1} - \log (2)(x)_0^{\dfrac{\pi }{2}}.
By taking the similar terms to the left hand side and applying the value of limits we have 2II=log2[π20]I=log2[π2]2I - I = - \log 2\left[ {\dfrac{\pi }{2} - 0} \right] \Rightarrow I = - \log 2\left[ {\dfrac{\pi }{2}} \right] .
We know the property that logam=mloga\log {a^m} = m\log a . So by applying this we can write I=π2log2I = \dfrac{{ - \pi }}{2}\log 2 .
Hence the required answer is I=π2log2I = \dfrac{{ - \pi }}{2}\log 2 .
So, the correct answer is “ I=π2log2I = \dfrac{{ - \pi }}{2}\log 2 ”.

Note : We have used the rule of fraction of logarithm in the above solution. It says that logab\log \dfrac{a}{b} can be written as log(a)log(b)\log (a) - \log (b) . Before solving this kind of question we should always remember the rules of logarithms and the trigonometric identities and avoid the calculation mistakes. We have also used the integral property with upper and lower limits i.e. 02af(x)dx=20af(x)dx,iff(2ax)=f(x)\int\limits_0^{2a} {f(x)dx = 2\int\limits_0^a {f(x)dx,\,if\,f(2a - x) = f(x)} }