Solveeit Logo

Question

Question: Evaluate \(\int\limits_{0}^{\dfrac{\pi }{2}}{{{e}^{x}}}(\sin x-\cos x)dx.\)...

Evaluate 0π2ex(sinxcosx)dx.\int\limits_{0}^{\dfrac{\pi }{2}}{{{e}^{x}}}(\sin x-\cos x)dx.

Explanation

Solution

Hint: The given integration is of typeex[f(x)+f(x)]dx\int{{{e}^{x}}\left[ f(x)+{{f}^{'}}(x) \right]}dx.
we can use ex[f(x)+f(x)]dx\int{{{e}^{x}}\left[ f(x)+{{f}^{'}}(x) \right]}dx =ex.f(x)+c={{e}^{x}}.f(x)+c, where c is constant. So first we find integration by using the property and after that we put limits.

Complete step-by-step answer:
Now we have to evaluate 0π2ex(sinxcosx)dx\int\limits_{0}^{\dfrac{\pi }{2}}{{{e}^{x}}}(\sin x-\cos x)dx
\Rightarrow - 0π2ex(cosxsinx)dx\int\limits_{0}^{\dfrac{\pi }{2}}{{{e}^{x}}}(\cos x-\sin x)dx
Here we take – sign outside of the integral sign. Now suppose f(x)=cosxf(x)=\cos x so we can write f(x)=sinx{{f}^{'}}(x)=-\sin x
So we haveex[f(x)+f(x)]dx\int{{{e}^{x}}\left[ f(x)+{{f}^{'}}(x) \right]}dx =ex.f(x)+c={{e}^{x}}.f(x)+c
\Rightarrow - 0π2ex(cosx+(sinx))dx\int\limits_{0}^{\dfrac{\pi }{2}}{{{e}^{x}}}(\cos x+(-\sin x))dx=0π2ex(f(x)+f(x))dx\int\limits_{0}^{\dfrac{\pi }{2}}{{{e}^{x}}}(f(x)+f'(x))dx
\Rightarrow - 0π2ex(cosxsinx)dx\int\limits_{0}^{\dfrac{\pi }{2}}{{{e}^{x}}}(\cos x-\sin x)dx=[exf(x)]0π2\left[ {{e}^{x}}f(x) \right]_{0}^{\dfrac{\pi }{2}}
Putting value of f(x) =cosx we can write
\Rightarrow - 0π2ex(cosxsinx)dx\int\limits_{0}^{\dfrac{\pi }{2}}{{{e}^{x}}}(\cos x-\sin x)dx=[excosx]0π2\left[ {{e}^{x}}\cos x \right]_{0}^{\dfrac{\pi }{2}}

Now substituting lower and upper limits we have
\Rightarrow - 0π2ex(cosxsinx)dx\int\limits_{0}^{\dfrac{\pi }{2}}{{{e}^{x}}}(\cos x-\sin x)dx=[eπ2cosπ2e0cos0]\left[ {{e}^{\dfrac{\pi }{2}}}\cos \dfrac{\pi }{2}-{{e}^{0}}\cos 0 \right]
As we know cosπ2=0;e0=1;and cos0=1\cos \dfrac{\pi }{2}=0;{{e}^{0}}=1;and\text{ cos0=1}
So we can write
\Rightarrow - 0π2ex(cosxsinx)dx\int\limits_{0}^{\dfrac{\pi }{2}}{{{e}^{x}}}(\cos x-\sin x)dx=[eπ2×0e0×1]\left[ {{e}^{\dfrac{\pi }{2}}}\times 0-{{e}^{0}}\times 1 \right]
\Rightarrow - 0π2ex(cosxsinx)dx\int\limits_{0}^{\dfrac{\pi }{2}}{{{e}^{x}}}(\cos x-\sin x)dx=1-1
0π2ex(cosxsinx)dx=1\Rightarrow \int\limits_{0}^{\dfrac{\pi }{2}}{{{e}^{x}}}(\cos x-\sin x)dx=1
Hence
0π2ex(cosxsinx)dx=1\int\limits_{0}^{\dfrac{\pi }{2}}{{{e}^{x}}}(\cos x-\sin x)dx=1

Note: This integration can be solved by integrating 0π2ex(cosx)dx0π2sinxdx\int\limits_{0}^{\dfrac{\pi }{2}}{{{e}^{x}}}(\cos x)dx-\int\limits_{0}^{\dfrac{\pi }{2}}{\sin x}dx separately by using integration by parts for0π2ex(cosx)dx\int\limits_{0}^{\dfrac{\pi }{2}}{{{e}^{x}}}(\cos x)dx