Question
Question: Evaluate \(\int\limits_{0}^{\dfrac{\pi }{2}}{{{e}^{x}}}(\sin x-\cos x)dx.\)...
Evaluate 0∫2πex(sinx−cosx)dx.
Solution
Hint: The given integration is of type∫ex[f(x)+f′(x)]dx.
we can use ∫ex[f(x)+f′(x)]dx =ex.f(x)+c, where c is constant. So first we find integration by using the property and after that we put limits.
Complete step-by-step answer:
Now we have to evaluate 0∫2πex(sinx−cosx)dx
⇒− 0∫2πex(cosx−sinx)dx
Here we take – sign outside of the integral sign. Now suppose f(x)=cosx so we can write f′(x)=−sinx
So we have∫ex[f(x)+f′(x)]dx =ex.f(x)+c
⇒− 0∫2πex(cosx+(−sinx))dx=0∫2πex(f(x)+f′(x))dx
⇒− 0∫2πex(cosx−sinx)dx=[exf(x)]02π
Putting value of f(x) =cosx we can write
⇒− 0∫2πex(cosx−sinx)dx=[excosx]02π
Now substituting lower and upper limits we have
⇒− 0∫2πex(cosx−sinx)dx=e2πcos2π−e0cos0
As we know cos2π=0;e0=1;and cos0=1
So we can write
⇒− 0∫2πex(cosx−sinx)dx=e2π×0−e0×1
⇒− 0∫2πex(cosx−sinx)dx=−1
⇒0∫2πex(cosx−sinx)dx=1
Hence
0∫2πex(cosx−sinx)dx=1
Note: This integration can be solved by integrating 0∫2πex(cosx)dx−0∫2πsinxdx separately by using integration by parts for0∫2πex(cosx)dx