Solveeit Logo

Question

Question: Evaluate \(\int\limits_0^{400\pi } {\sqrt {1 - \cos 2x} dx} \) (A) \(200\sqrt 2 \) (B) \(400\sqr...

Evaluate 0400π1cos2xdx\int\limits_0^{400\pi } {\sqrt {1 - \cos 2x} dx}
(A) 2002200\sqrt 2
(B) 4002400\sqrt 2
(C) 8002800\sqrt 2
(D) None

Explanation

Solution

Simplify the integrand using the half angle formula. Check whether the function obtained is periodic or not. If the function obtained is periodic, then apply the integration properties and simply the result. Finally apply the limits and find the value of the given integrand.

Formula used: Half angle formula for cosine function:
cos2x=12sin2x\cos 2x = 1 - 2{\sin ^2}x
A function f(x)f\left( x \right) is said to be periodic, if there exists a positive real number TTsuch that f(x+T)=f(x)f\left( {x + T} \right) = f\left( x \right)
Property of sine function: sin(πx)=sinx\sin \left( {\pi - x} \right) = - \sin x
Property of definite integral:
If f(x)f\left( x \right) is a periodic function with period value TT, then we have0nTf(x)dx=n0Tf(x)dx\int\limits_0^{nT} {f\left( x \right)dx} = n\int\limits_0^T {f\left( x \right)dx}
Integration of sine function is given by sinxdx=cosx\int {\sin xdx} = - \cos x
Evaluation of definite integral on a continuous function f(x)f\left( x \right) defined on [a,b]\left[ {a,b} \right]
abf(x)dx=[ϕ(x)]ab=ϕ(b)ϕ(a)\int\limits_a^b {f\left( x \right)dx} = \left[ {\phi \left( x \right)} \right]_a^b = \phi \left( b \right) - \phi \left( a \right)
Value of cosine function:
cosπ=1\cos \pi = - 1 and cos0=1\cos 0 = 1

Complete step-by-step solution:
It is given that integral we have,0400π1cos2xdx....(1)\int\limits_0^{400\pi } {\sqrt {1 - \cos 2x} dx} ....\left( 1 \right)
Using the half angle formula, cos2x=12sin2x\cos 2x = 1 - 2{\sin ^2}x and we can write it as,
Now, the given integral changes to
0400π1(12sin2x)dx\Rightarrow \int\limits_0^{400\pi } {\sqrt {1 - \left( {1 - 2{{\sin }^2}x} \right)} dx}
On splitting the bracket term and we get
0400π11+2sin2xdx\Rightarrow \int\limits_0^{400\pi } {\sqrt {1 - 1 + 2{{\sin }^2}x} dx}
On subtract the term and we get,
0400π2sin2xdx\Rightarrow \int\limits_0^{400\pi } {\sqrt {2{{\sin }^2}x} dx}
Taking the square term out we get,
0400π2sinxdx\Rightarrow \int\limits_0^{400\pi } {\sqrt 2 \left| {\sin x} \right|dx}
Now2\sqrt 2 , being a constant can be taken out of the integral sign.
20400πsinxdx....(2)\Rightarrow \sqrt 2 \int\limits_0^{400\pi } {\left| {\sin x} \right|dx} ....\left( 2 \right)
Now we have to check the given function sinx\left| {\sin x} \right| is a periodic function or it is not a periodic function.
We know that if f(x)f\left( x \right) is said to be periodic, if there exists a positive real number TT such that f(x+T)=f(x)f\left( {x + T} \right) = f\left( x \right)
Here, we can write it as, f(x)=sinxf\left( x \right) = \left| {\sin x} \right|
Since sine function has the property,sin(πx)=sinx\sin \left( {\pi - x} \right) = - \sin x
So,sin(πx)=sinx\left| {\sin \left( {\pi - x} \right)} \right| = \left| {\sin x} \right|
Thus, sinx\left| {\sin x} \right| is a periodic function with period π\pi .
Now using the following property of definite integrals on a given integral.
If f(x)f\left( x \right) is a periodic function with period value TT, then we have
0nTf(x)dx=n0Tf(x)dx\Rightarrow \int\limits_0^{nT} {f\left( x \right)dx} = n\int\limits_0^T {f\left( x \right)dx}
Here f(x)=sinxf\left( x \right) = \left| {\sin x} \right| is a periodic function with period π\pi .
So, the integral (2)\left( 2 \right) becomes
2×4000πsinxdx\Rightarrow \sqrt 2 \times 400\int\limits_0^\pi {\left| {\sin x} \right|dx}
On rewritten as
40020πsinxdx\Rightarrow 400\sqrt 2 \int\limits_0^\pi {\sin xdx}
Use the formula sinxdx=cosx\int {\sin xdx} = - \cos x in the above equation and apply the limits.
4002[cosx]0π\Rightarrow 400\sqrt 2 \left[ { - \cos x} \right]_0^\pi
Again we use the property abf(x)dx=[ϕ(x)]ab=ϕ(b)ϕ(a)\int\limits_a^b {f\left( x \right)dx} = \left[ {\phi \left( x \right)} \right]_a^b = \phi \left( b \right) - \phi \left( a \right) in above equation wheref(x)=cosxf\left( x \right) = \cos x, a=0a = 0 and b=πb = \pi .
The integral will become
4002[cosπcos0]\Rightarrow - 400\sqrt 2 \left[ {\cos \pi - \cos 0} \right]
Put the value of cosπ=1\cos \pi = - 1 and cos0=1\cos 0 = 1 in the above integral and find the value of integrand.
4002[11]\Rightarrow - 400\sqrt 2 \left[ { - 1 - 1} \right]
On adding the bracket term, we get
4002[2]\Rightarrow - 400\sqrt 2 \left[ { - 2} \right]
Let us multiply the term and we get,
8002\Rightarrow 800\sqrt 2
Thus, 0400π1cos2xdx=8002\int\limits_0^{400\pi } {\sqrt {1 - \cos 2x} dx} = 800\sqrt 2

Hence the correct option is (C).

Note: In the property abf(x)dx=[ϕ(x)]ab=ϕ(b)ϕ(a)\int\limits_a^b {f\left( x \right)dx} = \left[ {\phi \left( x \right)} \right]_a^b = \phi \left( b \right) - \phi \left( a \right), it does not matter which anti-derivative is used to evaluate the definite integral, because if f(x)dx=ϕ(x)+C\int {f\left( x \right)dx} = \phi \left( x \right) + C, then abf(x)dx=[ϕ(x)+C]ab=[ϕ(b)+C][ϕ(a)+C]=ϕ(b)ϕ(a)\int\limits_a^b {f\left( x \right)dx} = \left[ {\phi \left( x \right) + C} \right]_a^b = \left[ {\phi \left( b \right) + C} \right] - \left[ {\phi \left( a \right) + C} \right] = \phi \left( b \right) - \phi \left( a \right)
In other words, we have to evaluate the definite integral there is no need to keep the constant value of integration.