Solveeit Logo

Question

Question: Evaluate \[\int\limits_0^1 {{{\cot }^{ - 1}}(1 - x + {x^2})dx} \] A.\[\pi - \dfrac{{\log }}{2}\] ...

Evaluate 01cot1(1x+x2)dx\int\limits_0^1 {{{\cot }^{ - 1}}(1 - x + {x^2})dx}
A.πlog2\pi - \dfrac{{\log }}{2}
B. 2πlog22\pi - \dfrac{{\log }}{2}
C. π+log2\pi + \dfrac{{\log }}{2}
D. None of these

Explanation

Solution

We use the property that tangent and cotangent functions are reciprocal of each other. Convert the integral in terms of inverse tangent function and break the numerator in such a way that we can apply the property of addition of two tangent inverse functions. Use integration by parts to find the value of the obtained integral.

  • cotθ=1tanθcot1θ=tan11θ\because \cot \theta = \dfrac{1}{{\tan \theta }} \Rightarrow {\cot ^{ - 1}}\theta = {\tan ^{ - 1}}\dfrac{1}{\theta }
  • tan1x+tan1y=tan1(x+y1xy){\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)
    *In integration by parts we use the sequence of ILATE (Inverse trigonometric, Logarithms, algebraic, trigonometric, and exponential) for choosing the value of u,vu,v and then substitute in the integration formula of by parts integration.

Complete step by step solution:
We have to evaluate the integral 01cot1(1x+x2)dx\int\limits_0^1 {{{\cot }^{ - 1}}(1 - x + {x^2})dx}
Convert the integral in terms of tangent inverse
cot1(1x+x2)dx=01tan11(1x+x2)dx\Rightarrow {\cot ^{ - 1}}(1 - x + {x^2})dx = \int\limits_0^1 {{{\tan }^{ - 1}}\dfrac{1}{{(1 - x + {x^2})}}} dx................… (1)
Now we break the numerator in such a way so we can apply property of trigonometry
We can write 1=x+1x1 = x + 1 - x
Substitute the value of 1=x+1x1 = x + 1 - x in numerator of equation (1)
cot1(1x+x2)dx=01tan1x+1x(1x+x2)dx\Rightarrow {\cot ^{ - 1}}(1 - x + {x^2})dx = \int\limits_0^1 {{{\tan }^{ - 1}}\dfrac{{x + 1 - x}}{{(1 - x + {x^2})}}} dx
Write the denominator in easy terms
cot1(1x+x2)dx=01tan1x+1x1x(1x)dx\Rightarrow {\cot ^{ - 1}}(1 - x + {x^2})dx = \int\limits_0^1 {{{\tan }^{ - 1}}\dfrac{{x + 1 - x}}{{1 - x(1 - x)}}} dx...............… (2)
If we take two angles, (x)(x) and (1x)(1 - x) then we can write tan1(x)+tan1(1x)=tan1(x+(1x)1x(1x)){\tan ^{ - 1}}(x) + {\tan ^{ - 1}}(1 - x) = {\tan ^{ - 1}}\left( {\dfrac{{x + (1 - x)}}{{1 - x(1 - x)}}} \right)
So, RHS of the equation (2) transforms into easier form using the identity tan1x+tan1y=tan1(x+y1xy){\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)
cot1(1x+x2)dx=01(tan1(x)+tan1(1x))dx\Rightarrow {\cot ^{ - 1}}(1 - x + {x^2})dx = \int\limits_0^1 {\left( {{{\tan }^{ - 1}}(x) + {{\tan }^{ - 1}}(1 - x)} \right)dx}
Separate the two inverse functions in RHS
cot1(1x+x2)dx=01tan1(x)dx+01tan1(1x)dx\Rightarrow {\cot ^{ - 1}}(1 - x + {x^2})dx = \int\limits_0^1 {{{\tan }^{ - 1}}(x)dx} + \int\limits_0^1 {{{\tan }^{ - 1}}(1 - x)dx}.................… (3)
Since we know that 0af(x)dx=0af(ax)dx\int\limits_0^a {f(x)} dx = \int\limits_0^a {f(a - x)} dx
So, 01tan1(1x)dx=01tan11(1x)dx\int\limits_0^1 {{{\tan }^{ - 1}}(1 - x)dx} = \int\limits_0^1 {{{\tan }^{ - 1}}1 - (1 - x)dx}
Which on solving gives 01tan1(1x)dx=01tan1(11+x)dx\int\limits_0^1 {{{\tan }^{ - 1}}(1 - x)dx} = \int\limits_0^1 {{{\tan }^{ - 1}}\left( {1 - 1 + x} \right)dx}
i.e. 01tan1(1x)dx=01tan1xdx\int\limits_0^1 {{{\tan }^{ - 1}}(1 - x)dx} = \int\limits_0^1 {{{\tan }^{ - 1}}xdx}
Substitute the value of 01tan1(1x)dx=01tan1xdx\int\limits_0^1 {{{\tan }^{ - 1}}(1 - x)dx} = \int\limits_0^1 {{{\tan }^{ - 1}}xdx} in equation (3)
cot1(1x+x2)dx=01tan1(x)dx+01tan1(x)dx\Rightarrow {\cot ^{ - 1}}(1 - x + {x^2})dx = \int\limits_0^1 {{{\tan }^{ - 1}}(x)dx} + \int\limits_0^1 {{{\tan }^{ - 1}}(x)dx}
Add like terms in RHS
cot1(1x+x2)dx=201tan1(x)dx\Rightarrow {\cot ^{ - 1}}(1 - x + {x^2})dx = 2\int\limits_0^1 {{{\tan }^{ - 1}}(x)dx}
Now we can write RHS as
cot1(1x+x2)dx=201tan1x×1dx\Rightarrow {\cot ^{ - 1}}(1 - x + {x^2})dx = 2\int\limits_0^1 {{{\tan }^{ - 1}}x \times 1dx}
Use by parts to integrate RHS
Looking at the integral 201tan1x×1dx2\int\limits_0^1 {{{\tan }^{ - 1}}x \times 1dx}
Using the ILATE sequence we can tell that the term comes first in the sequence is uu and which comes later is vv i.e. in this case we have the terms inverse trigonometric and algebraic , first comes the inverse trigonometric term then comes the algebraic term so uu is tan1x{\tan ^{ - 1}}x and vv is 1
u=tan1x,v=1u = {\tan ^{ - 1}}x,v = 1
Now we calculate the differentiation of the term uu
u=dudxu' = \dfrac{{du}}{{dx}}
u=d(tan1x)dx\Rightarrow u' = \dfrac{{d({{\tan }^{ - 1}}x)}}{{dx}}
u=11+x2\Rightarrow u' = \dfrac{1}{{1 + {x^2}}}
Now substitute the values in equation uvdt=uvdtu(vdt)dt\int {uvdt = u\int {vdt - \int {u'\left( {\int {vdt} } \right)dt} } }
201tan1x.1dx=2tan1x011dx201(11+x2)(1dx)dx\Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2{\tan ^{ - 1}}x\int\limits_0^1 {1dx} - 2\int\limits_0^1 {(\dfrac{1}{{1 + {x^2}}})\left( {\int {1dx} } \right)dx}
Now we know 1dx=x\int {1dx = x}
Therefore substitute the value of 1dx=x\int {1dx = x} in RHS
201tan1x.1dx=2tan1x(x)201(11+x2)(x)dx\Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2{\tan ^{ - 1}}x(x) - 2\int\limits_0^1 {(\dfrac{1}{{1 + {x^2}}})(x)dx}
Now we can solve and bring out constant terms from the integral sign.
201tan1x.1dx=2xtan1x01(2x1+x2)dx\Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2x{\tan ^{ - 1}}x - \int\limits_0^1 {(\dfrac{{2x}}{{1 + {x^2}}})dx}
Since the numerator of the fraction in RHS is derivative of the denominator and we know dtt=logt\int {\dfrac{{dt}}{t} = \log t}
201tan1x.1dx=2[xtan1x]01[log(1+x2)]01\Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2\left[ {x{{\tan }^{ - 1}}x} \right]_0^1 - \left[ {\log \left( {1 + {x^2}} \right)} \right]_0^1
Calculate the values by substituting the upper and lower limits
201tan1x.1dx=2[1tan110][log(1+1)log(1+0)]\Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2\left[ {1{{\tan }^{ - 1}}1 - 0} \right] - \left[ {\log \left( {1 + 1} \right) - \log \left( {1 + 0} \right)} \right]
201tan1x.1dx=2[tan11][log2log1]\Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2\left[ {{{\tan }^{ - 1}}1} \right] - \left[ {\log 2 - \log 1} \right]
Substitute tan11=π4{\tan ^{ - 1}}1 = \dfrac{\pi }{4} and use the value log1=0\log 1 = 0
201tan1x.1dx=2×π4[log20]\Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2 \times \dfrac{\pi }{4} - \left[ {\log 2 - 0} \right]
201tan1x.1dx=π2log2\Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = \dfrac{\pi }{2} - \log 2
So value of 201tan1x.1dx2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} is π2log2\dfrac{\pi }{2} - \log 2.

\therefore Option D is correct.

Note: Alternative method:
We can solve the solution after the step 201tan1x.1dx=2[tan11][log2log1]2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2\left[ {{{\tan }^{ - 1}}1} \right] - \left[ {\log 2 - \log 1} \right] in another way
For step in the end we can use rule of log i.e. logmlogn=logmn\log m - \log n = \log \dfrac{m}{n}
201tan1x.1dx=2[tan11][log21]\Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2\left[ {{{\tan }^{ - 1}}1} \right] - \left[ {\log \dfrac{2}{1}} \right]
201tan1x.1dx=π2log2\Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = \dfrac{\pi }{2} - \log 2
So value of 201tan1x.1dx2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} isπ2log2\dfrac{\pi }{2} - \log 2.
\therefore Option D is correct.