Question
Mathematics Question on integral
Evaluate: \int\left\\{\left(2x-3\right)^{5}+\frac{1}{\left(7x-5\right)^{3}}+\frac{1}{\sqrt{5x-4}}+\frac{1}{2-3x}+\sqrt{3x+2}\right\\}dx
A
I=121(2x−3)6−141(7x−5)−2+525x−4−31log∣2−3x∣+92(3x+2)23+C
B
I=121(2x−3)6−141(7x−5)−2+525x−4
C
I=121(2x−3)4+141(7x−5)−2
D
None of these
Answer
I=121(2x−3)6−141(7x−5)−2+525x−4−31log∣2−3x∣+92(3x+2)23+C
Explanation
Solution
\int\left\\{\left(2x-3\right)^{5}+\frac{1}{\left(7x-5\right)^{3}}+\frac{1}{\sqrt{5x-4}}+\frac{1}{2-3x}+\sqrt{3x+2}\right\\}dx ⇒I=∫(2x−3)5dx+∫(7x−5)−3dx+∫(5x−4)−21dx+∫2−3x1dx+∫3x+2dx ⇒I=2×6(2x−3)6+7×(−2)(7x−5)−2+5×21(5x−4)21+(−31)log∣2−3x∣+3×23(3x+2)23+C ⇒I=121(2x−3)6−141(7x−5)−2+525x−4−31log∣2−3x∣+92(3x+2)23+C