Solveeit Logo

Question

Mathematics Question on integral

Evaluate: \int\left\\{\left(2x-3\right)^{5}+\frac{1}{\left(7x-5\right)^{3}}+\frac{1}{\sqrt{5x-4}}+\frac{1}{2-3x}+\sqrt{3x+2}\right\\}dx

A

I=112(2x3)6114(7x5)2+255x413log23x+29(3x+2)32+CI= \frac{1}{12}\left(2x-3\right)^{6}-\frac{1}{14}\left(7x-5\right)^{-2}+\frac{2}{5}\sqrt{5x-4}-\frac{1}{3}log\left|2-3x\right|+\frac{2}{9}\left(3x+2\right)^{\frac{3}{2}}+C

B

I=112(2x3)6114(7x5)2+255x4I= \frac{1}{12}\left(2x-3\right)^{6}-\frac{1}{14}\left(7x-5\right)^{-2}+\frac{2}{5}\sqrt{5x-4}

C

I=112(2x3)4+114(7x5)2I= \frac{1}{12}\left(2x-3\right)^{4}+\frac{1}{14}\left(7x-5\right)^{-2}

D

None of these

Answer

I=112(2x3)6114(7x5)2+255x413log23x+29(3x+2)32+CI= \frac{1}{12}\left(2x-3\right)^{6}-\frac{1}{14}\left(7x-5\right)^{-2}+\frac{2}{5}\sqrt{5x-4}-\frac{1}{3}log\left|2-3x\right|+\frac{2}{9}\left(3x+2\right)^{\frac{3}{2}}+C

Explanation

Solution

\int\left\\{\left(2x-3\right)^{5}+\frac{1}{\left(7x-5\right)^{3}}+\frac{1}{\sqrt{5x-4}}+\frac{1}{2-3x}+\sqrt{3x+2}\right\\}dx I=(2x3)5dx+(7x5)3dx+(5x4)12dx+123xdx+3x+2dx\Rightarrow I= \int\left(2x-3\right)^{5}dx +\int\left(7x-5\right)^{-3}dx +\int \left(5x-4\right)^{-\frac{1}{2}}dx +\int\frac{1}{2-3x}dx +\int \sqrt{3x+2}dx I=(2x3)62×6+(7x5)27×(2)+(5x4)125×12+(13)log23x+(3x+2)323×32+C\Rightarrow I = \frac{\left(2x-3\right)^{6}}{2\times6} + \frac{\left(7x - 5\right)^{-2}}{7\times\left(-2\right)} + \frac{\left(5x-4\right)^{\frac{1}{2}}}{5\times\frac{1}{2}} + \left(\frac{1}{-3}\right)log \left|2-3x\right| + \frac{\left(3x+2\right)^{\frac{3}{2}}}{3\times\frac{3}{2}}+C I=112(2x3)6114(7x5)2+255x413log23x+29(3x+2)32+C\Rightarrow I = \frac{1}{12} \left(2x-3\right)^{6} - \frac{1}{14} \left(7x-5\right)^{-2}+\frac{2}{5}\sqrt{5x - 4}-\frac{1}{3}log \left|2-3x\right| + \frac{2}{9}\left(3x+2\right)^{\frac{3}{2}} + C